Dallard Jérémy, Merlhiot Xavier, Petitjean Noémie, Duprey Sonia
Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, LBMC UMR_T9406, F69622 Lyon, France; CEA, LIST, Interactive Simulation Laboratory, Gif-sur-Yvette F-91191, France.
CEA, LIST, Interactive Simulation Laboratory, Gif-sur-Yvette F-91191, France.
J Biomech. 2018 Jan 23;67:166-171. doi: 10.1016/j.jbiomech.2017.11.024. Epub 2017 Nov 29.
Modeling human-object interactions is a necessary step in the ergonomic assessment of products. Fingertip finite element models can help investigating these interactions, if they are built based on realistic geometrical data and material properties. The aim of this study was to investigate the fingertip geometry and its mechanical response under compression, and to identify the parameters of a hyperelastic material property associated to the fingertip soft tissues. Fingertip compression tests in an MRI device were performed on 5 subjects at either 2 or 4 N and at 15° or 50°. The MRI images allowed to document both the internal and external fingertip dimensions and to build 5 subject-specific finite element models. Simulations reproducing the fingertip compression tests were run to obtain the material property parameters of the soft tissues. Results indicated that two ellipses in the sagittal and longitudinal plane could describe the external fingertip geometry. The internal geometries indicated an averaged maximal thickness of soft tissues of 6.4 ± 0.8 mm and a 4 ± 1 mm height for the phalanx bone. The averaged deflections under loading went from 1.8 ± 0.3 mm at 2 N, 50° to 3.1 ± 0.2 mm at 4 N, 15°. Finally, the following set of parameters for a second order hyperelastic law to model the fingertip soft tissues was proposed: C=0.59 ± 0.09 kPa and C = 2.65 ± 0.88 kPa. These data should facilitate further efforts on fingertip finite element modeling.
对人体与物体的相互作用进行建模是产品人体工程学评估中的必要步骤。如果基于真实的几何数据和材料属性构建指尖有限元模型,那么这些模型有助于研究此类相互作用。本研究的目的是研究指尖的几何形状及其在压缩状态下的力学响应,并确定与指尖软组织相关的超弹性材料属性参数。在MRI设备中,对5名受试者分别在2N或4N的力以及15°或50°的角度下进行了指尖压缩测试。MRI图像能够记录指尖的内部和外部尺寸,并构建5个针对个体的有限元模型。运行模拟指尖压缩测试的仿真,以获取软组织的材料属性参数。结果表明,矢状面和纵切面中的两个椭圆可以描述指尖的外部几何形状。内部几何形状显示软组织的平均最大厚度为6.4±0.8mm,指骨高度为4±1mm。加载下的平均挠度从2N、50°时的1.8±0.3mm到4N、15°时的3.1±0.2mm。最后,提出了一组用于模拟指尖软组织的二阶超弹性定律参数:C=0.59±0.09kPa和C=2.65±0.88kPa。这些数据应有助于在指尖有限元建模方面的进一步研究。