Suppr超能文献

基于体内宏观压痕的软组织本构参数可识别性

Identifiability of soft tissue constitutive parameters from in-vivo macro-indentation.

作者信息

Oddes Zohar, Solav Dana

机构信息

Faculty of Mechanical Engineering, Technion Institute of Technology, Haifa, Israel.

Faculty of Mechanical Engineering, Technion Institute of Technology, Haifa, Israel.

出版信息

J Mech Behav Biomed Mater. 2023 Apr;140:105708. doi: 10.1016/j.jmbbm.2023.105708. Epub 2023 Feb 3.

Abstract

Reliable identification of soft tissue material parameters is frequently required in a variety of applications, particularly for biomechanical simulations using finite element analysis (FEA). However, determining representative constitutive laws and material parameters is challenging and often comprises a bottleneck that hinders the successful implementation of FEA. Soft tissues exhibit a nonlinear response and are commonly modeled using hyperelastic constitutive laws. In-vivo material parameter identification, for which standard mechanical tests (e.g., uniaxial tension and compression) are inapplicable, is commonly achieved using finite macro-indentation test. Due to the lack of analytical solutions, the parameters are commonly identified using inverse FEA (iFEA), in which simulated results and experimental data are iteratively compared. However, determining what data must be collected to accurately identify a unique parameter set remains unclear. This work investigates the sensitivities of two types of measurements: indentation force-depth data (e.g., measured using an instrumented indenter) and full-field surface displacements (e.g., using digital image correlation). To eliminate model fidelity and measurement-related errors, we employed an axisymmetric indentation FE model to produce synthetic data for four 2-parameter hyperelastic constitutive laws: compressible Neo-Hookean, and nearly incompressible Mooney-Rivlin, Ogden, and Ogden-Moerman models. For each constitutive law, we computed the objective functions representing the discrepancies in the reaction force, the surface displacement, and their combination, and visualized them for hundreds of parameter sets, spanning a representative range as found in the literature for the bulk soft tissue complex in human lower limbs. Moreover, we quantified three identifiability metrics, which provided insights into the uniqueness (or lack thereof) and the sensitivities. This approach provides a clear and systematic evaluation of the parameter identifiability, which is independent of the selection of the optimization algorithm and initial guesses required in iFEA. Our analysis indicated that the indenter's force-depth data, despite being commonly used for parameter identification, was insufficient for reliably and accurately identifying both parameters for all the investigated material models and that the surface displacement data improved the parameter identifiability in all cases, although the Mooney-Rivlin parameters remained poorly identifiable. Informed by the results, we then discuss several identification strategies for each constitutive model. Finally, we openly provide the codes used in this study, to allow others to further investigate the indentation problem according to their specifications (e.g., by modifying the geometries, dimensions, mesh, material models, boundary conditions, contact parameters, or objective functions).

摘要

在各种应用中,尤其是在使用有限元分析(FEA)进行生物力学模拟时,经常需要可靠地识别软组织材料参数。然而,确定具有代表性的本构定律和材料参数具有挑战性,并且常常构成阻碍有限元分析成功实施的瓶颈。软组织表现出非线性响应,通常使用超弹性本构定律进行建模。体内材料参数识别无法采用标准力学测试(例如单轴拉伸和压缩),通常通过有限宏观压痕测试来实现。由于缺乏解析解,通常使用逆有限元分析(iFEA)来识别参数,其中将模拟结果与实验数据进行迭代比较。然而,确定必须收集哪些数据才能准确识别唯一的参数集仍不明确。这项工作研究了两种测量的灵敏度:压痕力-深度数据(例如使用仪器化压头测量)和全场表面位移(例如使用数字图像相关技术)。为了消除模型保真度和与测量相关的误差,我们采用轴对称压痕有限元模型为四种双参数超弹性本构定律生成合成数据:可压缩的新胡克模型、近不可压缩的穆尼-里夫林模型、奥格登模型和奥格登-莫尔曼模型。对于每种本构定律,我们计算了表示反作用力、表面位移及其组合差异的目标函数,并针对数百个参数集对其进行可视化,这些参数集涵盖了文献中人类下肢大块软组织复合体的代表性范围。此外,我们量化了三个可识别性指标,这些指标提供了关于唯一性(或缺乏唯一性)和灵敏度的见解。这种方法提供了对参数可识别性清晰而系统的评估,该评估独立于逆有限元分析中所需的优化算法和初始猜测的选择。我们的分析表明,尽管压头的力-深度数据通常用于参数识别,但对于所有研究的材料模型,它不足以可靠且准确地识别两个参数,并且表面位移数据在所有情况下都提高了参数可识别性,尽管穆尼-里夫林参数仍然难以识别。根据结果,我们随后讨论了每种本构模型的几种识别策略。最后,我们公开提供了本研究中使用的代码,以便其他人能够根据他们的规范进一步研究压痕问题(例如通过修改几何形状、尺寸、网格、材料模型、边界条件、接触参数或目标函数)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验