Center for Electrochemistry, Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States.
J Am Chem Soc. 2017 Dec 27;139(51):18552-18557. doi: 10.1021/jacs.7b08702. Epub 2017 Dec 15.
The electrocatalytic reduction of CO has been studied extensively and produces a number of products. The initial reaction in the CO reduction is often taken to be the 1e formation of the radical anion, CO. However, the electrochemical detection and characterization of CO is challenging because of the short lifetime of CO, which can dimerize and react with proton donors and even mild oxidants. Here, we report the generation and quantitative determination of CO in N,N-dimethylformamide (DMF) with the tip generation/substrate collection (TG/SC) mode of scanning electrochemical microscopy (SECM). CO was reduced at a hemisphere-shaped Hg/Pt ultramicroelectrode (UME) or a Hg/Au film UME, which were utilized as the SECM tips. The CO produced can either dimerize to form oxalate within the nanogap between SECM tip and substrate or collected at SECM substrate (e.g., an Au UME). The collection efficiency (CE) for CO depends on the distance (d) between the tip and substrate. The dimerization rate (6.0 × 10 M s) and half-life (10 ns) of CO can be evaluated by fitting the collection efficiency vs distance curve. The dimerized species of CO, oxalate, can also be determined quantitatively. Furthermore, the formal potential (E') and heterogeneous rate constant (k) for CO reduction were determined with different quaternary ammonium electrolytes. The significant difference in k is due to a tunneling effect caused by the adsorption of the electrolytes on the electrode surface at negative potentials.
CO 的电化学还原得到了广泛的研究,产生了多种产物。CO 还原的初始反应通常被认为是自由基阴离子 CO 的 1e 形成。然而,由于 CO 的短寿命,其电化学检测和表征具有挑战性,CO 可以二聚化并与质子供体甚至温和氧化剂反应。在这里,我们报告了在 N,N-二甲基甲酰胺 (DMF) 中使用扫描电化学显微镜 (SECM) 的尖端生成/基底收集 (TG/SC) 模式生成和定量测定 CO。CO 在半球形 Hg/Pt 超微电极 (UME) 或 Hg/Au 薄膜 UME 上还原,这些电极被用作 SECM 尖端。产生的 CO 可以在 SECM 尖端和基底之间的纳米间隙内二聚化形成草酸盐,或者在 SECM 基底(例如 Au UME)上收集。CO 的收集效率 (CE) 取决于尖端和基底之间的距离 (d)。通过拟合收集效率与距离曲线,可以评估 CO 的二聚化速率 (6.0×10 M s) 和半衰期 (10 ns)。还可以定量确定 CO 的二聚化产物草酸。此外,还使用不同的季铵盐电解质确定了 CO 还原的形式电位 (E') 和非均相速率常数 (k)。k 的显著差异是由于在负电位下电解质在电极表面的吸附引起的隧道效应所致。