Suppr超能文献

足细胞组蛋白 H3K27me3 的改变调控小鼠和人类肾小球疾病。

Shifts in podocyte histone H3K27me3 regulate mouse and human glomerular disease.

机构信息

Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada.

Electron Microscopy Research Services, Newcastle University, Newcastle upon Tyne, United Kingdom.

出版信息

J Clin Invest. 2018 Jan 2;128(1):483-499. doi: 10.1172/JCI95946. Epub 2017 Dec 11.

Abstract

Histone protein modifications control fate determination during normal development and dedifferentiation during disease. Here, we set out to determine the extent to which dynamic changes to histones affect the differentiated phenotype of ordinarily quiescent adult glomerular podocytes. To do this, we examined the consequences of shifting the balance of the repressive histone H3 lysine 27 trimethylation (H3K27me3) mark in podocytes. Adriamycin nephrotoxicity and subtotal nephrectomy (SNx) studies indicated that deletion of the histone methylating enzyme EZH2 from podocytes decreased H3K27me3 levels and sensitized mice to glomerular disease. H3K27me3 was enriched at the promoter region of the Notch ligand Jag1 in podocytes, and derepression of Jag1 by EZH2 inhibition or knockdown facilitated podocyte dedifferentiation. Conversely, inhibition of the Jumonji C domain-containing demethylases Jmjd3 and UTX increased the H3K27me3 content of podocytes and attenuated glomerular disease in adriamycin nephrotoxicity, SNx, and diabetes. Podocytes in glomeruli from humans with focal segmental glomerulosclerosis or diabetic nephropathy exhibited diminished H3K27me3 and heightened UTX content. Analogous to human disease, inhibition of Jmjd3 and UTX abated nephropathy progression in mice with established glomerular injury and reduced H3K27me3 levels. Together, these findings indicate that ostensibly stable chromatin modifications can be dynamically regulated in quiescent cells and that epigenetic reprogramming can improve outcomes in glomerular disease by repressing the reactivation of developmental pathways.

摘要

组蛋白蛋白修饰控制正常发育过程中的命运决定和疾病过程中的去分化。在这里,我们着手确定组蛋白的动态变化在何种程度上影响通常静止的成年肾小球足细胞的分化表型。为此,我们研究了改变抑制性组蛋白 H3 赖氨酸 27 三甲基化(H3K27me3)标记在足细胞中的平衡的后果。阿霉素肾病和部分肾切除术(SNx)研究表明,从足细胞中缺失组蛋白甲基转移酶 EZH2 会降低 H3K27me3 水平,并使小鼠对肾小球疾病敏感。H3K27me3 在足细胞中的 Notch 配体 Jag1 的启动子区域富集,EZH2 抑制或敲低Jag1 的表达可促进足细胞去分化。相反,抑制 Jumonji C 结构域包含的去甲基酶 Jmjd3 和 UTX 增加了足细胞的 H3K27me3 含量,并减轻了阿霉素肾病、SNx 和糖尿病中的肾小球疾病。在局灶节段性肾小球硬化或糖尿病肾病患者的肾小球中,足细胞的 H3K27me3 减少,UTX 含量增加。与人类疾病类似,抑制 Jmjd3 和 UTX 可减轻已建立肾小球损伤的小鼠的肾病进展,并降低 H3K27me3 水平。总之,这些发现表明,在静止细胞中,表观遗传修饰可以动态调节,并且通过抑制发育途径的重新激活,可以改善肾小球疾病的预后。

相似文献

1
Shifts in podocyte histone H3K27me3 regulate mouse and human glomerular disease.
J Clin Invest. 2018 Jan 2;128(1):483-499. doi: 10.1172/JCI95946. Epub 2017 Dec 11.
3
[Distributions of H3K27me3 and its modification enzymes in different tissues of mice].
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2017 Nov;33(11):1491-1497.
6
Regulation of Retinal Development via the Epigenetic Modification of Histone H3.
Adv Exp Med Biol. 2016;854:635-41. doi: 10.1007/978-3-319-17121-0_84.
7
AGE-Induced Suppression of EZH2 Mediates Injury of Podocytes by Reducing H3K27me3.
Am J Nephrol. 2020;51(9):676-692. doi: 10.1159/000510140. Epub 2020 Aug 27.
8
H3K27me3 Demethylase UTX Restrains Plasma Cell Formation.
J Immunol. 2022 Apr 15;208(8):1873-1885. doi: 10.4049/jimmunol.2100948. Epub 2022 Mar 28.
9
WT1 ameliorates podocyte injury via repression of EZH2/β-catenin pathway in diabetic nephropathy.
Free Radic Biol Med. 2017 Jul;108:280-299. doi: 10.1016/j.freeradbiomed.2017.03.012. Epub 2017 Mar 16.
10
Global histone H3 lysine 27 triple methylation levels are reduced in vessels with advanced atherosclerotic plaques.
Life Sci. 2015 May 15;129:3-9. doi: 10.1016/j.lfs.2014.10.010. Epub 2014 Oct 31.

引用本文的文献

1
Notch signaling in diabetic kidney disease: recent progress.
Front Endocrinol (Lausanne). 2025 Jul 31;16:1537769. doi: 10.3389/fendo.2025.1537769. eCollection 2025.
3
METTL10 attenuates adriamycin-induced podocyte injury by targeting cell dedifferentiation.
Sci Rep. 2025 Jan 7;15(1):1218. doi: 10.1038/s41598-024-80526-8.
4
Role of Epigenetic Changes in the Pathophysiology of Diabetic Kidney Disease.
Glomerular Dis. 2024 Nov 13;4(1):211-226. doi: 10.1159/000541923. eCollection 2024 Jan-Dec.
5
Epigenetics of Hypertensive Nephropathy.
Biomedicines. 2024 Nov 16;12(11):2622. doi: 10.3390/biomedicines12112622.
7
Amino acid metabolism in kidney health and disease.
Nat Rev Nephrol. 2024 Dec;20(12):771-788. doi: 10.1038/s41581-024-00872-8. Epub 2024 Aug 28.
8
Sex-specific modulation of renal epigenetic and injury markers in aging kidney.
Am J Physiol Renal Physiol. 2024 Sep 1;327(3):F543-F551. doi: 10.1152/ajprenal.00140.2024. Epub 2024 Jul 4.
9
Functioning and mechanisms of PTMs in renal diseases.
Front Pharmacol. 2023 Nov 21;14:1238706. doi: 10.3389/fphar.2023.1238706. eCollection 2023.
10
Pathomechanisms of Diabetic Kidney Disease.
J Clin Med. 2023 Nov 27;12(23):7349. doi: 10.3390/jcm12237349.

本文引用的文献

1
Janus Kinase 2 Regulates Transcription Factor EB Expression and Autophagy Completion in Glomerular Podocytes.
J Am Soc Nephrol. 2017 Sep;28(9):2641-2653. doi: 10.1681/ASN.2016111208. Epub 2017 Apr 19.
2
An allosteric PRC2 inhibitor targeting the H3K27me3 binding pocket of EED.
Nat Chem Biol. 2017 Apr;13(4):381-388. doi: 10.1038/nchembio.2304. Epub 2017 Jan 30.
4
Regional glutamine deficiency in tumours promotes dedifferentiation through inhibition of histone demethylation.
Nat Cell Biol. 2016 Oct;18(10):1090-101. doi: 10.1038/ncb3410. Epub 2016 Sep 12.
5
Histone demethylases in physiology and cancer: a tale of two enzymes, JMJD3 and UTX.
Curr Opin Genet Dev. 2016 Feb;36:59-67. doi: 10.1016/j.gde.2016.03.010. Epub 2016 May 3.
6
Developmental signalling pathways in renal fibrosis: the roles of Notch, Wnt and Hedgehog.
Nat Rev Nephrol. 2016 Jul;12(7):426-39. doi: 10.1038/nrneph.2016.54. Epub 2016 May 3.
9
Adriamycin susceptibility among C57BL/6 substrains.
Kidney Int. 2016 Mar;89(3):721-3. doi: 10.1016/j.kint.2015.10.019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验