Suppr超能文献

足细胞组蛋白 H3K27me3 的改变调控小鼠和人类肾小球疾病。

Shifts in podocyte histone H3K27me3 regulate mouse and human glomerular disease.

机构信息

Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada.

Electron Microscopy Research Services, Newcastle University, Newcastle upon Tyne, United Kingdom.

出版信息

J Clin Invest. 2018 Jan 2;128(1):483-499. doi: 10.1172/JCI95946. Epub 2017 Dec 11.

Abstract

Histone protein modifications control fate determination during normal development and dedifferentiation during disease. Here, we set out to determine the extent to which dynamic changes to histones affect the differentiated phenotype of ordinarily quiescent adult glomerular podocytes. To do this, we examined the consequences of shifting the balance of the repressive histone H3 lysine 27 trimethylation (H3K27me3) mark in podocytes. Adriamycin nephrotoxicity and subtotal nephrectomy (SNx) studies indicated that deletion of the histone methylating enzyme EZH2 from podocytes decreased H3K27me3 levels and sensitized mice to glomerular disease. H3K27me3 was enriched at the promoter region of the Notch ligand Jag1 in podocytes, and derepression of Jag1 by EZH2 inhibition or knockdown facilitated podocyte dedifferentiation. Conversely, inhibition of the Jumonji C domain-containing demethylases Jmjd3 and UTX increased the H3K27me3 content of podocytes and attenuated glomerular disease in adriamycin nephrotoxicity, SNx, and diabetes. Podocytes in glomeruli from humans with focal segmental glomerulosclerosis or diabetic nephropathy exhibited diminished H3K27me3 and heightened UTX content. Analogous to human disease, inhibition of Jmjd3 and UTX abated nephropathy progression in mice with established glomerular injury and reduced H3K27me3 levels. Together, these findings indicate that ostensibly stable chromatin modifications can be dynamically regulated in quiescent cells and that epigenetic reprogramming can improve outcomes in glomerular disease by repressing the reactivation of developmental pathways.

摘要

组蛋白蛋白修饰控制正常发育过程中的命运决定和疾病过程中的去分化。在这里,我们着手确定组蛋白的动态变化在何种程度上影响通常静止的成年肾小球足细胞的分化表型。为此,我们研究了改变抑制性组蛋白 H3 赖氨酸 27 三甲基化(H3K27me3)标记在足细胞中的平衡的后果。阿霉素肾病和部分肾切除术(SNx)研究表明,从足细胞中缺失组蛋白甲基转移酶 EZH2 会降低 H3K27me3 水平,并使小鼠对肾小球疾病敏感。H3K27me3 在足细胞中的 Notch 配体 Jag1 的启动子区域富集,EZH2 抑制或敲低Jag1 的表达可促进足细胞去分化。相反,抑制 Jumonji C 结构域包含的去甲基酶 Jmjd3 和 UTX 增加了足细胞的 H3K27me3 含量,并减轻了阿霉素肾病、SNx 和糖尿病中的肾小球疾病。在局灶节段性肾小球硬化或糖尿病肾病患者的肾小球中,足细胞的 H3K27me3 减少,UTX 含量增加。与人类疾病类似,抑制 Jmjd3 和 UTX 可减轻已建立肾小球损伤的小鼠的肾病进展,并降低 H3K27me3 水平。总之,这些发现表明,在静止细胞中,表观遗传修饰可以动态调节,并且通过抑制发育途径的重新激活,可以改善肾小球疾病的预后。

相似文献

8
H3K27me3 Demethylase UTX Restrains Plasma Cell Formation.H3K27me3 去甲基化酶 UTX 抑制浆细胞的形成。
J Immunol. 2022 Apr 15;208(8):1873-1885. doi: 10.4049/jimmunol.2100948. Epub 2022 Mar 28.

引用本文的文献

1
Notch signaling in diabetic kidney disease: recent progress.糖尿病肾病中的Notch信号传导:最新进展
Front Endocrinol (Lausanne). 2025 Jul 31;16:1537769. doi: 10.3389/fendo.2025.1537769. eCollection 2025.
5
Epigenetics of Hypertensive Nephropathy.高血压肾病的表观遗传学
Biomedicines. 2024 Nov 16;12(11):2622. doi: 10.3390/biomedicines12112622.
7
Amino acid metabolism in kidney health and disease.肾脏健康与疾病中的氨基酸代谢。
Nat Rev Nephrol. 2024 Dec;20(12):771-788. doi: 10.1038/s41581-024-00872-8. Epub 2024 Aug 28.
8
Sex-specific modulation of renal epigenetic and injury markers in aging kidney.衰老肾脏中性别特异性的肾表观遗传和损伤标志物的调节
Am J Physiol Renal Physiol. 2024 Sep 1;327(3):F543-F551. doi: 10.1152/ajprenal.00140.2024. Epub 2024 Jul 4.
9
Functioning and mechanisms of PTMs in renal diseases.蛋白质翻译后修饰在肾脏疾病中的作用及机制。
Front Pharmacol. 2023 Nov 21;14:1238706. doi: 10.3389/fphar.2023.1238706. eCollection 2023.
10
Pathomechanisms of Diabetic Kidney Disease.糖尿病肾病的发病机制
J Clin Med. 2023 Nov 27;12(23):7349. doi: 10.3390/jcm12237349.

本文引用的文献

9
Adriamycin susceptibility among C57BL/6 substrains.C57BL/6亚系对阿霉素的敏感性。
Kidney Int. 2016 Mar;89(3):721-3. doi: 10.1016/j.kint.2015.10.019.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验