Department of Chemistry & Biochemistry, University of California, San Diego , La Jolla, California 92093, United States.
Dipartimento di Chimica "G. Ciamician", Università di Bologna , Bologna BO, Italy 40126.
Acc Chem Res. 2018 Jan 16;51(1):3-11. doi: 10.1021/acs.accounts.7b00331. Epub 2017 Dec 11.
Revolutions in science and engineering frequently result from the development, and wide adoption, of a new, powerful characterization or imaging technique. Beginning with the first glass lenses and telescopes in astronomy, to the development of visual-light microscopy, staining techniques, confocal microscopy, and fluorescence super-resolution microscopy in biology, and most recently aberration-corrected, cryogenic, and ultrafast (4D) electron microscopy, X-ray microscopy, and scanning probe microscopy in nanoscience. Through these developments, our perception and understanding of the physical nature of matter at length-scales beyond ordinary perception have been fundamentally transformed. Despite this progression in microscopy, techniques for observing nanoscale chemical processes and solvated/hydrated systems are limited, as the necessary spatial and temporal resolution presents significant technical challenges. However, the standard reliance on indirect or bulk phase characterization of nanoscale samples in liquids is undergoing a shift in recent times with the realization ( Williamson et al. Nat. Mater . 2003 , 2 , 532 - 536 ) of liquid-cell (scanning) transmission electron microscopy, LC(S)TEM, where picoliters of solution are hermetically sealed between electron-transparent "windows," which can be directly imaged or videoed at the nanoscale using conventional transmission electron microscopes. This Account seeks to open a discussion on the topic of standardizing strategies for conducting imaging experiments with a view to characterizing dynamics and motion of nanoscale materials. This is a challenge that could be described by critics and proponents alike, as analogous to doing chemistry in a lightning storm; where the nature of the solution, the nanomaterial, and the dynamic behaviors are all potentially subject to artifactual influence by the very act of our observation.
科学和工程领域的革命通常源于新的、强大的特征描述或成像技术的发展和广泛采用。从天文学中第一个玻璃透镜和望远镜的发展,到生物学中可见光显微镜、染色技术、共聚焦显微镜和荧光超分辨率显微镜的发展,以及最近在纳米科学中像差校正、低温和超快(4D)电子显微镜、X 射线显微镜和扫描探针显微镜的发展,我们对物质物理性质的感知和理解在很长的尺度上已经发生了根本性的转变。尽管显微镜技术取得了这些进展,但观察纳米级化学过程和溶剂化/水合体系的技术仍然受到限制,因为必要的空间和时间分辨率带来了重大的技术挑战。然而,近年来,随着意识到(Williamson 等人,Nat. Mater. 2003 ,2 ,532-536)液体池(扫描)透射电子显微镜,LC(S)TEM,在纳米级液体样本中,标准上依靠间接或整体相特征描述的方法正在发生转变,其中几皮升的溶液被密封在电子透明的“窗口”之间,可以使用传统的透射电子显微镜直接在纳米尺度上成像或录像。本报告旨在就进行成像实验的标准化策略展开讨论,以期对纳米级材料的动力学和运动进行特征描述。批评者和支持者都可以将这一挑战描述为,在雷暴中做化学实验;溶液、纳米材料的性质以及动态行为都可能受到我们观察行为的人为影响。