Suppr超能文献

利用动态透射电子显微镜实现对生物反应的直接纳米级观察。

Enabling direct nanoscale observations of biological reactions with dynamic TEM.

作者信息

Evans James E, Browning Nigel D

机构信息

Pacific Northwest National Laboratory, Environmental Molecular Sciences Laboratory, 3335 Innovation Boulevard, Richland, WA 99354, USA.

出版信息

Microscopy (Oxf). 2013 Feb;62(1):147-56. doi: 10.1093/jmicro/dfs081. Epub 2013 Jan 12.

Abstract

Biological processes occur on a wide range of spatial and temporal scales: from femtoseconds to hours and from angstroms to meters. Many new biological insights can be expected from a better understanding of the processes that occur on these very fast and very small scales. In this regard, new instruments that use fast X-ray or electron pulses are expected to reveal novel mechanistic details for macromolecular protein dynamics. To ensure that any observed conformational change is physiologically relevant and not constrained by 3D crystal packing, it would be preferable for experiments to utilize small protein samples such as single particles or 2D crystals that mimic the target protein's native environment. These samples are not typically amenable to X-ray analysis, but transmission electron microscopy has imaged such sample geometries for over 40 years using both direct imaging and diffraction modes. While conventional transmission electron microscopes (TEM) have visualized biological samples with atomic resolution in an arrested or frozen state, the recent development of the dynamic TEM (DTEM) extends electron microscopy into a dynamic regime using pump-probe imaging. A new second-generation DTEM, which is currently being constructed, has the potential to observe live biological processes with unprecedented spatiotemporal resolution by using pulsed electron packets to probe the sample on micro- and nanosecond timescales. This article reviews the experimental parameters necessary for coupling DTEM with in situ liquid microscopy to enable direct imaging of protein conformational dynamics in a fully hydrated environment and visualize reactions propagating in real time.

摘要

生物过程发生在广泛的空间和时间尺度上

从飞秒到小时,从埃到米。通过更好地理解在这些极快和极小尺度上发生的过程,可以期待获得许多新的生物学见解。在这方面,使用快速X射线或电子脉冲的新仪器有望揭示大分子蛋白质动力学的新机制细节。为确保任何观察到的构象变化在生理上是相关的,且不受三维晶体堆积的限制,实验最好使用小蛋白质样品,如模拟目标蛋白质天然环境的单颗粒或二维晶体。这些样品通常不适合进行X射线分析,但透射电子显微镜已经使用直接成像和衍射模式对这种样品几何形状进行了40多年的成像。虽然传统透射电子显微镜(TEM)已经在静态或冷冻状态下以原子分辨率观察生物样品,但动态透射电子显微镜(DTEM)的最新发展通过泵浦探针成像将电子显微镜扩展到动态领域。目前正在建造的新一代DTEM有潜力通过使用脉冲电子束在微秒和纳秒时间尺度上探测样品,以前所未有的时空分辨率观察生物活体过程。本文综述了将DTEM与原位液体显微镜耦合以在完全水合环境中直接成像蛋白质构象动力学并实时可视化反应传播所需的实验参数。

相似文献

1
Enabling direct nanoscale observations of biological reactions with dynamic TEM.
Microscopy (Oxf). 2013 Feb;62(1):147-56. doi: 10.1093/jmicro/dfs081. Epub 2013 Jan 12.
2
Visualizing macromolecular complexes with in situ liquid scanning transmission electron microscopy.
Micron. 2012 Nov;43(11):1085-90. doi: 10.1016/j.micron.2012.01.018. Epub 2012 Feb 15.
3
4D electron microscopy: principles and applications.
Acc Chem Res. 2012 Oct 16;45(10):1828-39. doi: 10.1021/ar3001684. Epub 2012 Sep 11.
4
Laser-based in situ techniques: novel methods for generating extreme conditions in TEM samples.
Microsc Res Tech. 2009 Mar;72(3):122-30. doi: 10.1002/jemt.20664.
5
3D motion of DNA-Au nanoconjugates in graphene liquid cell electron microscopy.
Nano Lett. 2013 Sep 11;13(9):4556-61. doi: 10.1021/nl402694n. Epub 2013 Aug 20.
6
Nanosecond time-resolved investigations using the in situ of dynamic transmission electron microscope (DTEM).
Ultramicroscopy. 2008 Oct;108(11):1441-9. doi: 10.1016/j.ultramic.2008.03.013. Epub 2008 Jun 26.
7
Setting Up Parallel Illumination on the Talos Arctica for High-Resolution Data Collection.
Methods Mol Biol. 2021;2215:125-144. doi: 10.1007/978-1-0716-0966-8_6.
8
Cryofixation during live-imaging enables millisecond time-correlated light and electron microscopy.
J Microsc. 2018 Nov;272(2):87-95. doi: 10.1111/jmi.12747. Epub 2018 Aug 8.
10
Tackling the Challenges of Dynamic Experiments Using Liquid-Cell Transmission Electron Microscopy.
Acc Chem Res. 2018 Jan 16;51(1):3-11. doi: 10.1021/acs.accounts.7b00331. Epub 2017 Dec 11.

引用本文的文献

1
Cryogenic electron ptychographic single particle analysis with wide bandwidth information transfer.
Nat Commun. 2023 May 25;14(1):3027. doi: 10.1038/s41467-023-38268-0.
2
Atomic-Resolution Imaging of Fast Nanoscale Dynamics with Bright Microsecond Electron Pulses.
Nano Lett. 2021 Jan 13;21(1):612-618. doi: 10.1021/acs.nanolett.0c04184. Epub 2020 Dec 10.
3
Glucose starvation triggers filamentous septin assemblies in an septin-2 deletion mutant.
Biol Open. 2019 Jan 2;8(1):bio037622. doi: 10.1242/bio.037622.
4
An introduction to sample preparation and imaging by cryo-electron microscopy for structural biology.
Methods. 2016 May 1;100:3-15. doi: 10.1016/j.ymeth.2016.02.017. Epub 2016 Feb 28.
5
Stimuli-responsive nanomaterials for biomedical applications.
J Am Chem Soc. 2015 Feb 18;137(6):2140-54. doi: 10.1021/ja510147n. Epub 2015 Feb 6.

本文引用的文献

1
Direct in situ determination of the mechanisms controlling nanoparticle nucleation and growth.
ACS Nano. 2012 Oct 23;6(10):8599-610. doi: 10.1021/nn303371y. Epub 2012 Sep 13.
2
High-resolution protein structure determination by serial femtosecond crystallography.
Science. 2012 Jul 20;337(6092):362-4. doi: 10.1126/science.1217737. Epub 2012 May 31.
3
Atomic-scale imaging and spectroscopy for in situ liquid scanning transmission electron microscopy.
Microsc Microanal. 2012 Jun;18(3):621-7. doi: 10.1017/S1431927612000104.
4
Visualizing macromolecular complexes with in situ liquid scanning transmission electron microscopy.
Micron. 2012 Nov;43(11):1085-90. doi: 10.1016/j.micron.2012.01.018. Epub 2012 Feb 15.
5
Imaging protein structure in water at 2.7 nm resolution by transmission electron microscopy.
Biophys J. 2012 Feb 22;102(4):L15-7. doi: 10.1016/j.bpj.2012.01.009. Epub 2012 Feb 21.
6
Charged nanoparticle dynamics in water induced by scanning transmission electron microscopy.
Langmuir. 2012 Feb 28;28(8):3695-8. doi: 10.1021/la2048486. Epub 2012 Feb 13.
7
Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy.
Nano Lett. 2011 Jul 13;11(7):2809-13. doi: 10.1021/nl201166k. Epub 2011 May 27.
8
Femtosecond X-ray protein nanocrystallography.
Nature. 2011 Feb 3;470(7332):73-7. doi: 10.1038/nature09750.
9
Electron microscopic evidence for the myosin head lever arm mechanism in hydrated myosin filaments using the gas environmental chamber.
Biochem Biophys Res Commun. 2011 Feb 25;405(4):651-6. doi: 10.1016/j.bbrc.2011.01.087. Epub 2011 Jan 31.
10
Nanometer-resolution electron microscopy through micrometers-thick water layers.
Ultramicroscopy. 2010 Aug;110(9):1114-9. doi: 10.1016/j.ultramic.2010.04.001. Epub 2010 Jun 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验