Harvard John A. Paulson School of Engineering & Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States.
Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University , Boston, Massachusetts 02214, United States.
Environ Sci Technol. 2018 Jan 16;52(2):654-662. doi: 10.1021/acs.est.7b03821. Epub 2017 Dec 29.
Methylmercury (MeHg) concentrations can increase by 100 000 times between seawater and marine phytoplankton, but levels vary across sites. To better understand how ecosystem properties affect variability in planktonic MeHg concentrations, we develop a model for MeHg uptake and trophic transfer at the base of marine food webs. The model successfully reproduces measured concentrations in phytoplankton and zooplankton across diverse sites from the Northwest Atlantic Ocean. Highest MeHg concentrations in phytoplankton are simulated under low dissolved organic carbon (DOC) concentrations and ultraoligotrophic conditions typical of open ocean regions. This occurs because large organic complexes bound to MeHg inhibit cellular uptake and cell surface area to volume ratios are greatest under low productivity conditions. Modeled bioaccumulation factors for phytoplankton (10-10) are more variable than those for zooplankton (10-10) across ranges in DOC (40-500 μM) and productivities (ultraoligotrophic to hypereutrophic) typically found in marine ecosystems. Zooplankton growth dilutes their MeHg body burden, but they also consume greater quantities of MeHg enriched prey at larger sizes. These competing processes lead to lower variability in MeHg concentrations in zooplankton compared to phytoplankton. Even under hypereutrophic conditions, modeled growth dilution in marine zooplankton is insufficient to lower their MeHg concentrations, contrasting findings from freshwater ecosystems.
甲基汞(MeHg)在海水和海洋浮游植物之间的浓度可以增加 100,000 倍,但在不同地点的水平有所不同。为了更好地了解生态系统特性如何影响浮游植物 MeHg 浓度的变异性,我们开发了一个用于海洋食物网基础上的 MeHg 吸收和营养转移的模型。该模型成功地再现了来自北大西洋各个不同地点的浮游植物和浮游动物的实测浓度。在低溶解有机碳(DOC)浓度和典型开阔海域的超寡营养条件下,浮游植物中的 MeHg 浓度最高。这是因为与 MeHg 结合的大有机复合物抑制细胞吸收,并且在低生产力条件下细胞表面积与体积比最大。在通常存在于海洋生态系统中的 DOC(40-500 μM)和生产力(超寡营养至超营养)范围内,浮游植物的模型化生物积累因子(10-10)比浮游动物(10-10)更具变异性。浮游动物的生长会稀释它们的 MeHg 体负荷,但它们也会在更大的体型时消耗更多富含 MeHg 的猎物。这些相互竞争的过程导致浮游动物中的 MeHg 浓度比浮游植物变化更小。即使在超营养条件下,海洋浮游动物的模型化生长稀释也不足以降低其 MeHg 浓度,这与淡水生态系统的发现形成对比。