Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu 210023, China.
Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 United States.
Environ Sci Technol. 2020 May 5;54(9):5446-5455. doi: 10.1021/acs.est.9b06075. Epub 2020 Feb 19.
Methylmercury is greatly bioconcentrated and biomagnified in marine plankton ecosystems, and these communities form the basis of marine food webs. Therefore, the evaluation of the potential exposure of methylmercury to higher trophic levels, including humans, requires a better understanding of its distribution in the ocean and the factors that control its biomagnification. In this study, a coupled physical/ecological model is used to simulate the trophic transfer of monomethylmercury (MMHg) in a marine plankton ecosystem. The model includes phytoplankton, a microbial community, herbivorous zooplankton (HZ), and carnivorous zooplankton (CZ). The model captures both shorter food chains in oligotrophic regions, with small HZ feeding on small phytoplankton, and longer chains in higher nutrient conditions, with larger HZ feeding on larger phytoplankton and larger CZ feeding on larger HZ. In the model, trophic dilution occurs in the food webs that involve small zooplankton, as the grazing fluxes of small zooplankton are insufficient to accumulate more MMHg in themselves than in their prey. The model suggests that biomagnification is more prominent in large zooplankton and that the microbial community plays an important role in the trophic transfer of MMHg. Sensitivity analyses show that with increasing body size, the sensitivity of the trophic magnification ratio to grazing, mortality rates, and food assimilation efficiency (AE) increases, while the sensitivity to excretion rates decreases. More predation or a longer zooplankton lifespan may lead to more prominent biomagnification, especially for large species. Because lower AE results in more predation, modeled ratios of MMHg concentrations between large plankton are doubled or even tripled when the AE decreases from 50% to 10%. This suggests that the biomagnification of large zooplankton is particularly sensitive to food assimilation efficiency.
甲基汞在海洋浮游生物生态系统中被高度生物浓缩和生物放大,这些群落构成了海洋食物网的基础。因此,评估甲基汞对包括人类在内的更高营养级别的潜在暴露,需要更好地了解其在海洋中的分布以及控制其生物放大的因素。在这项研究中,使用耦合的物理/生态模型来模拟海洋浮游生物生态系统中一甲基汞(MMHg)的营养转移。该模型包括浮游植物、微生物群落、草食性浮游动物(HZ)和肉食性浮游动物(CZ)。该模型既包括在贫营养区较短的食物链,其中小型 HZ 以小型浮游植物为食,也包括在较高营养条件下较长的食物链,其中较大的 HZ 以较大的浮游植物为食,较大的 CZ 以较大的 HZ 为食。在模型中,食物链中存在小型浮游动物时会发生营养稀释,因为小型浮游动物的摄食通量不足以使其自身积累比猎物更多的 MMHg。该模型表明,生物放大在大型浮游动物中更为明显,微生物群落在 MMHg 的营养转移中发挥着重要作用。敏感性分析表明,随着体型的增大,营养放大倍数对摄食、死亡率和食物同化效率(AE)的敏感性增加,而对排泄率的敏感性降低。更多的捕食或更长的浮游动物寿命可能导致更明显的生物放大,尤其是对于大型物种。由于较低的 AE 会导致更多的捕食,当 AE 从 50%降低到 10%时,模型中大浮游动物之间 MMHg 浓度的比值会增加一倍甚至三倍。这表明大型浮游动物的生物放大对食物同化效率特别敏感。