Merrimack Pharmaceuticals, Inc., Cambridge, MA, 02139, USA.
Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany.
Nat Commun. 2017 Dec 11;8(1):2032. doi: 10.1038/s41467-017-02289-3.
As interactions between the immune system and tumour cells are governed by a complex network of cell-cell interactions, knowing the specific immune cell composition of a solid tumour may be essential to predict a patient's response to immunotherapy. Here, we analyse in depth how to derive the cellular composition of a solid tumour from bulk gene expression data by mathematical deconvolution, using indication-specific and cell type-specific reference gene expression profiles (RGEPs) from tumour-derived single-cell RNA sequencing data. We demonstrate that tumour-derived RGEPs are essential for the successful deconvolution and that RGEPs from peripheral blood are insufficient. We distinguish nine major cell types, as well as three T cell subtypes. Using the tumour-derived RGEPs, we can estimate the content of many tumours associated immune and stromal cell types, their therapeutically relevant ratios, as well as an improved gene expression profile of the malignant cells.
由于免疫系统和肿瘤细胞之间的相互作用受细胞间相互作用的复杂网络所控制,了解实体瘤的特定免疫细胞组成对于预测患者对免疫疗法的反应可能至关重要。在这里,我们通过数学反卷积深入分析如何从批量基因表达数据中得出实体瘤的细胞组成,使用来自肿瘤衍生的单细胞 RNA 测序数据的特定于指示和特定于细胞类型的参考基因表达谱(RGEP)。我们证明肿瘤衍生的 RGEP 对于成功的反卷积至关重要,而来自外周血的 RGEP 则不足。我们区分了九种主要的细胞类型,以及三种 T 细胞亚型。使用肿瘤衍生的 RGEP,我们可以估计许多与肿瘤相关的免疫和基质细胞类型的含量、它们的治疗相关比例,以及恶性细胞的改进基因表达谱。