Suppr超能文献

多种 NAD 酶效应因子家族通过 VI 型分泌系统介导细菌间拮抗作用。

Diverse NADase effector families mediate interbacterial antagonism via the type VI secretion system.

机构信息

From the Michael DeGroote Institute for Infectious Disease Research and.

Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada.

出版信息

J Biol Chem. 2018 Feb 2;293(5):1504-1514. doi: 10.1074/jbc.RA117.000178. Epub 2017 Dec 13.

Abstract

The bacterial type VI secretion system (T6SS) mediates antagonistic cell-cell interactions between competing Gram-negative bacteria. In plant-beneficial bacteria, this pathway has been shown to suppress the growth of bacterial pathogens; however, the identification and mode of action of T6SS effector proteins that mediate this protective effect remain poorly defined. Here, we identify two previously uncharacterized effectors required for interbacterial antagonism by the plant commensal bacterium Consistent with the established effector-immunity paradigm for antibacterial T6SS substrates, the toxic activities of these effectors are neutralized by adjacently encoded cognate immunity determinants. Although one of these effectors, RhsA, belongs to the family of DNase enzymes, the activity of the other was not apparent from its sequence. To determine the mechanism of toxicity of this latter effector, we determined its 1.3 Å crystal structure in complex with its immunity protein and found that it resembles NAD(P)-degrading enzymes. In line with this structural similarity, biochemical characterization of this effector, termed Tne2 (ype VI secretion ADase ffector family 2), demonstrates that it possesses potent NAD(P) hydrolase activity. Tne2 is the founding member of a widespread family of interbacterial NADases predicted to transit not only the Gram-negative T6SS but also the Gram-positive type VII secretion system, a pathway recently implicated in interbacterial competition among Firmicutes. Together, this work identifies new T6SS effectors employed by a plant commensal bacterium to antagonize its competitors and broadly implicates NAD(P)-hydrolyzing enzymes as substrates of interbacterial conflict pathways found in diverse bacterial phyla.

摘要

细菌的 VI 型分泌系统(T6SS)介导了竞争的革兰氏阴性细菌之间的拮抗细胞-细胞相互作用。在植物有益细菌中,该途径已被证明可以抑制细菌病原体的生长;然而,介导这种保护作用的 T6SS 效应蛋白的鉴定和作用模式仍未得到很好的定义。在这里,我们鉴定了两种以前未被表征的效应蛋白,它们是植物共生菌 发挥细菌间拮抗作用所必需的。与抗菌 T6SS 底物的既定效应器-免疫范式一致,这些效应器的毒性活性被相邻编码的同源免疫决定簇中和。尽管这些效应器之一 RhsA 属于 DNase 酶家族,但另一个效应器的活性从其序列中并不明显。为了确定该效应器的毒性机制,我们确定了它与免疫蛋白复合物的 1.3 Å 晶体结构,并发现它类似于 NAD(P) 降解酶。与这种结构相似性一致,对该效应器的生化特性进行了研究,将其命名为 Tne2(ype VI secretion ADase ffector family 2),表明它具有很强的 NAD(P) 水解酶活性。Tne2 是广泛存在的细菌间 NAD 酶家族的创始成员,预计不仅可以通过革兰氏阴性 T6SS,还可以通过革兰氏阳性的 VII 型分泌系统进行转运,该途径最近被认为与厚壁菌门细菌之间的竞争有关。总之,这项工作鉴定了一种植物共生菌用来拮抗其竞争者的新的 T6SS 效应蛋白,并广泛表明 NAD(P) 水解酶作为不同细菌门中发现的细菌间冲突途径的底物。

相似文献

1
Diverse NADase effector families mediate interbacterial antagonism via the type VI secretion system.
J Biol Chem. 2018 Feb 2;293(5):1504-1514. doi: 10.1074/jbc.RA117.000178. Epub 2017 Dec 13.
2
Expanding the molecular weaponry of bacterial species.
J Biol Chem. 2018 Feb 2;293(5):1515-1516. doi: 10.1074/jbc.H118.001463.
7
T6SS nuclease effectors in act as potent antimicrobials in interbacterial competition.
J Bacteriol. 2024 Jun 20;206(6):e0027323. doi: 10.1128/jb.00273-23. Epub 2024 May 8.
9
Formylglycine-Generating Enzyme-Like Proteins Constitute a Novel Family of Widespread Type VI Secretion System Immunity Proteins.
J Bacteriol. 2021 Oct 12;203(21):e0028121. doi: 10.1128/JB.00281-21. Epub 2021 Aug 16.

引用本文的文献

1
Antibacterial ADP-ribosyl cyclase toxins inhibit bacterial growth by rapidly depleting NAD(P).
J Biol Chem. 2025 Jul 16;301(8):110491. doi: 10.1016/j.jbc.2025.110491.
2
Deciphering the T6SS toolkit: two decades of research decoding a versatile bacterial weapon.
J Bacteriol. 2025 Jul 24;207(7):e0018825. doi: 10.1128/jb.00188-25. Epub 2025 Jun 13.
3
A new class of type VI secretion system effectors can carry two toxic domains and are recognized through the WHIX motif for export.
PLoS Biol. 2025 Mar 17;23(3):e3003053. doi: 10.1371/journal.pbio.3003053. eCollection 2025 Mar.
4
Activation of the bacterial defense-associated sirtuin system.
Commun Biol. 2025 Feb 24;8(1):297. doi: 10.1038/s42003-025-07743-3.
5
Not just passengers: effectors contribute to the assembly of the type VI secretion system as structural building blocks.
J Bacteriol. 2025 Mar 20;207(3):e0045524. doi: 10.1128/jb.00455-24. Epub 2025 Feb 4.
6
Genomic analysis of isolated from surface water and animal sources in Chile reveals new T6SS effector protein candidates.
Front Microbiol. 2024 Dec 11;15:1496223. doi: 10.3389/fmicb.2024.1496223. eCollection 2024.
7
Phages gain the upper hand in the metabolic arms race for NAD.
Mol Cell. 2024 Dec 5;84(23):4480-4482. doi: 10.1016/j.molcel.2024.11.017.
8
utilizes a unique type VI secretion system to promote its survival in niches with prey bacteria.
mBio. 2024 Jul 17;15(7):e0146824. doi: 10.1128/mbio.01468-24. Epub 2024 Jun 25.
10
The role of the type VI secretion system in the stress resistance of plant-associated bacteria.
Stress Biol. 2024 Feb 20;4(1):16. doi: 10.1007/s44154-024-00151-3.

本文引用的文献

1
type 6 secretion system effector trafficking in target bacterial cells.
Proc Natl Acad Sci U S A. 2017 Aug 29;114(35):9427-9432. doi: 10.1073/pnas.1711219114. Epub 2017 Aug 14.
3
Shigella sonnei Encodes a Functional T6SS Used for Interbacterial Competition and Niche Occupancy.
Cell Host Microbe. 2017 Jun 14;21(6):769-776.e3. doi: 10.1016/j.chom.2017.05.004.
4
The Pseudomonas putida T6SS is a plant warden against phytopathogens.
ISME J. 2017 Apr;11(4):972-987. doi: 10.1038/ismej.2016.169. Epub 2017 Jan 3.
5
PAAR-Rhs proteins harbor various C-terminal toxins to diversify the antibacterial pathways of type VI secretion systems.
Environ Microbiol. 2017 Jan;19(1):345-360. doi: 10.1111/1462-2920.13621. Epub 2017 Jan 18.
7
Type VI Secretion System Substrates Are Transferred and Reused among Sister Cells.
Cell. 2016 Sep 22;167(1):99-110.e12. doi: 10.1016/j.cell.2016.08.023. Epub 2016 Sep 8.
8
Salmonella Typhimurium utilizes a T6SS-mediated antibacterial weapon to establish in the host gut.
Proc Natl Acad Sci U S A. 2016 Aug 23;113(34):E5044-51. doi: 10.1073/pnas.1608858113. Epub 2016 Aug 8.
9
Strain competition restricts colonization of an enteric pathogen and prevents colitis.
EMBO Rep. 2016 Sep;17(9):1281-91. doi: 10.15252/embr.201642282. Epub 2016 Jul 18.
10
VgrG and PAAR Proteins Define Distinct Versions of a Functional Type VI Secretion System.
PLoS Pathog. 2016 Jun 28;12(6):e1005735. doi: 10.1371/journal.ppat.1005735. eCollection 2016 Jun.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验