Suppr超能文献

两种低特异性蛋白质中特异性的保守性

Conservation of Specificity in Two Low-Specificity Proteins.

作者信息

Wheeler Lucas C, Anderson Jeremy A, Morrison Anneliese J, Wong Caitlyn E, Harms Michael J

机构信息

Department of Chemistry and Biochemistry, University of Oregon , Eugene, Oregon 97403, United States.

Institute of Molecular Biology, University of Oregon , Eugene, Oregon 97403, United States.

出版信息

Biochemistry. 2018 Feb 6;57(5):684-695. doi: 10.1021/acs.biochem.7b01086. Epub 2017 Dec 29.

Abstract

Many regulatory proteins bind peptide regions of target proteins and modulate their activity. Such regulatory proteins can often interact with highly diverse target peptides. In many instances, it is not known if the peptide-binding interface discriminates targets in a biological context, or whether biological specificity is achieved exclusively through external factors such as subcellular localization. We used an evolutionary biochemical approach to distinguish these possibilities for two such low-specificity proteins: S100A5 and S100A6. We used isothermal titration calorimetry to study the binding of peptides with diverse sequence and biochemistry to human S100A5 and S100A6. These proteins bound distinct, but overlapping, sets of peptide targets. We then studied the peptide binding properties of orthologs sampled from across five amniote species. Binding specificity was conserved along all lineages, for the last 320 million years, despite the low specificity of each protein. We used ancestral sequence reconstruction to determine the binding specificity of the last common ancestor of the paralogs. The ancestor bound the entire set of peptides bound by modern S100A5 and S100A6 proteins, suggesting that paralog specificity evolved via subfunctionalization. To rule out the possibility that specificity is conserved because it is difficult to modify, we identified a single historical mutation that, when reverted in human S100A5, gave it the ability to bind an S100A6-specific peptide. These results reveal strong evolutionary constraints on peptide binding specificity. Despite being able to bind a large number of targets, the specificity of S100 peptide interfaces is likely important for the biology of these proteins.

摘要

许多调节蛋白与靶蛋白的肽区域结合并调节其活性。这类调节蛋白通常能与高度多样的靶肽相互作用。在许多情况下,尚不清楚肽结合界面在生物学背景下是否能区分靶标,或者生物学特异性是否仅通过亚细胞定位等外部因素来实现。我们采用进化生物化学方法来区分两种低特异性蛋白(S100A5和S100A6)的这些可能性。我们使用等温滴定量热法研究具有不同序列和生化性质的肽与人类S100A5和S100A6的结合。这些蛋白结合不同但有重叠的肽靶标集。然后,我们研究了从五种羊膜动物物种中取样的直系同源物的肽结合特性。尽管每种蛋白的特异性较低,但在过去3.2亿年里,结合特异性在所有谱系中都得以保留。我们使用祖先序列重建来确定这两个旁系同源物的最后共同祖先的结合特异性。该祖先结合了现代S100A5和S100A6蛋白所结合的全部肽集,这表明旁系同源物特异性是通过亚功能化进化而来的。为了排除特异性因难以改变而得以保留的可能性,我们鉴定出一个单一的历史突变,当在人类S100A5中恢复该突变时,它就获得了结合S100A6特异性肽的能力。这些结果揭示了对肽结合特异性的强大进化限制。尽管S100蛋白能够结合大量靶标,但S100肽界面的特异性可能对这些蛋白的生物学功能很重要。

相似文献

1
Conservation of Specificity in Two Low-Specificity Proteins.两种低特异性蛋白质中特异性的保守性
Biochemistry. 2018 Feb 6;57(5):684-695. doi: 10.1021/acs.biochem.7b01086. Epub 2017 Dec 29.
2
Were Ancestral Proteins Less Specific?祖先蛋白的特异性较低吗?
Mol Biol Evol. 2021 May 19;38(6):2227-2239. doi: 10.1093/molbev/msab019.
3
Blocking the interface region amongst S100A6 and RAGE V domain via S100B protein.通过 S100B 蛋白阻断 S100A6 和 RAGE V 结构域之间的界面区域。
Biochem Biophys Res Commun. 2020 Dec 10;533(3):332-337. doi: 10.1016/j.bbrc.2020.09.040. Epub 2020 Sep 18.
9
Learning peptide recognition rules for a low-specificity protein.学习低特异性蛋白质的肽识别规则。
Protein Sci. 2020 Nov;29(11):2259-2273. doi: 10.1002/pro.3958. Epub 2020 Oct 5.

引用本文的文献

2
Ancestral Reconstruction and the Evolution of Protein Energy Landscapes.祖先重建与蛋白质能量景观的演化。
Annu Rev Biophys. 2024 Jul;53(1):127-146. doi: 10.1146/annurev-biophys-030722-125440. Epub 2024 Jun 28.
3
Evolution of a plant growth-regulatory protein interaction specificity.植物生长调节蛋白相互作用特异性的进化。
Nat Plants. 2023 Dec;9(12):2059-2070. doi: 10.1038/s41477-023-01556-0. Epub 2023 Oct 30.
7
Resurrecting Enzymes by Ancestral Sequence Reconstruction.通过祖先序列重建复活酶
Methods Mol Biol. 2022;2397:111-136. doi: 10.1007/978-1-0716-1826-4_7.
8
Were Ancestral Proteins Less Specific?祖先蛋白的特异性较低吗?
Mol Biol Evol. 2021 May 19;38(6):2227-2239. doi: 10.1093/molbev/msab019.
9
Learning peptide recognition rules for a low-specificity protein.学习低特异性蛋白质的肽识别规则。
Protein Sci. 2020 Nov;29(11):2259-2273. doi: 10.1002/pro.3958. Epub 2020 Oct 5.

本文引用的文献

5
The human olfactory transcriptome.人类嗅觉转录组
BMC Genomics. 2016 Aug 11;17(1):619. doi: 10.1186/s12864-016-2960-3.
7
The thermostability and specificity of ancient proteins.古代蛋白质的热稳定性和特异性。
Curr Opin Struct Biol. 2016 Jun;38:37-43. doi: 10.1016/j.sbi.2016.05.015. Epub 2016 Jun 9.
9
Catalytic Promiscuity of Ancestral Esterases and Hydroxynitrile Lyases.祖先酯酶和羟基腈裂解酶的催化多效性
J Am Chem Soc. 2016 Jan 27;138(3):1046-56. doi: 10.1021/jacs.5b12209. Epub 2016 Jan 15.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验