Suppr超能文献

用光对转化生长因子-β信号进行时空控制。

Spatiotemporal Control of TGF-β Signaling with Light.

作者信息

Li Yuchao, Lee Minji, Kim Nury, Wu Guoyu, Deng Difan, Kim Jin Man, Liu Xuedong, Heo Won Do, Zi Zhike

机构信息

Otto-Warburg Laboratory, Max Planck Institute for Molecular Genetics , Berlin 14195, Germany.

Department of Biological Sciences, Korea Advanced Institute of Science and Technology , Daejeon 34141, Republic of Korea.

出版信息

ACS Synth Biol. 2018 Feb 16;7(2):443-451. doi: 10.1021/acssynbio.7b00225. Epub 2018 Jan 12.

Abstract

Cells employ signaling pathways to make decisions in response to changes in their immediate environment. Transforming growth factor beta (TGF-β) is an important growth factor that regulates many cellular functions in development and disease. Although the molecular mechanisms of TGF-β signaling have been well studied, our understanding of this pathway is limited by the lack of tools that allow the control of TGF-β signaling with high spatiotemporal resolution. Here, we developed an optogenetic system (optoTGFBRs) that enables the precise control of TGF-β signaling in time and space. Using the optoTGFBRs system, we show that TGF-β signaling can be selectively and sequentially activated in single cells through the modulation of the pattern of light stimulations. By simultaneously monitoring the subcellular localization of TGF-β receptor and Smad2 proteins, we characterized the dynamics of TGF-β signaling in response to different patterns of blue light stimulations. The spatial and temporal precision of light control will make the optoTGFBRs system as a powerful tool for quantitative analyses of TGF-β signaling at the single cell level.

摘要

细胞利用信号通路来响应其周围环境的变化并做出决策。转化生长因子β(TGF-β)是一种重要的生长因子,在发育和疾病过程中调节许多细胞功能。尽管TGF-β信号传导的分子机制已得到充分研究,但由于缺乏能够在高时空分辨率下控制TGF-β信号传导的工具,我们对该信号通路的理解仍受到限制。在此,我们开发了一种光遗传学系统(optoTGFBRs),可实现对TGF-β信号在时间和空间上的精确控制。使用optoTGFBRs系统,我们表明通过调节光刺激模式,TGF-β信号可以在单个细胞中被选择性地、顺序地激活。通过同时监测TGF-β受体和Smad2蛋白的亚细胞定位,我们表征了TGF-β信号在响应不同蓝光刺激模式时的动态变化。光控的时空精度将使optoTGFBRs系统成为在单细胞水平上对TGF-β信号进行定量分析的有力工具。

相似文献

1
Spatiotemporal Control of TGF-β Signaling with Light.
ACS Synth Biol. 2018 Feb 16;7(2):443-451. doi: 10.1021/acssynbio.7b00225. Epub 2018 Jan 12.
2
Optogenetic Control of TGF-β Signaling.
Methods Mol Biol. 2022;2488:113-124. doi: 10.1007/978-1-0716-2277-3_9.
3
Transforming growth factor-β (TGF-β) signaling in healthy human fetal skin: a descriptive study.
J Dermatol Sci. 2015 May;78(2):117-24. doi: 10.1016/j.jdermsci.2015.02.012. Epub 2015 Feb 26.
4
Fibroblast-specific TGF-β-Smad2/3 signaling underlies cardiac fibrosis.
J Clin Invest. 2017 Oct 2;127(10):3770-3783. doi: 10.1172/JCI94753. Epub 2017 Sep 11.
8
Phosphoinositide-binding activity of Smad2 is essential for its function in TGF-β signaling.
J Biol Chem. 2021 Nov;297(5):101303. doi: 10.1016/j.jbc.2021.101303. Epub 2021 Oct 14.
9
Human ortholog of Drosophila Melted impedes SMAD2 release from TGF-β receptor I to inhibit TGF-β signaling.
Proc Natl Acad Sci U S A. 2015 Jun 9;112(23):E3000-9. doi: 10.1073/pnas.1504671112. Epub 2015 May 26.
10
TGF beta receptor internalization into EEA1-enriched early endosomes: role in signaling to Smad2.
J Cell Biol. 2002 Sep 30;158(7):1239-49. doi: 10.1083/jcb.200204088.

引用本文的文献

1
Optogenetic control of Nodal signaling patterns.
Development. 2025 May 1;152(9). doi: 10.1242/dev.204506.
2
Prenatal light exposure affects diurnal rhythms and visual development of the layer embryonic retina.
Poult Sci. 2025 Jan;104(1):104497. doi: 10.1016/j.psj.2024.104497. Epub 2024 Nov 4.
3
Liebig's law of the minimum in the TGF-β/SMAD pathway.
PLoS Comput Biol. 2024 May 16;20(5):e1012072. doi: 10.1371/journal.pcbi.1012072. eCollection 2024 May.
4
Optogenetic control of Nodal signaling patterns.
bioRxiv. 2024 Apr 12:2024.04.11.588875. doi: 10.1101/2024.04.11.588875.
5
Directed differentiation of human iPSCs into mesenchymal lineages by optogenetic control of TGF-β signaling.
Cell Rep. 2023 May 30;42(5):112509. doi: 10.1016/j.celrep.2023.112509. Epub 2023 May 12.
6
Modeling Cellular Signaling Variability Based on Single-Cell Data: The TGFβ-SMAD Signaling Pathway.
Methods Mol Biol. 2023;2634:215-251. doi: 10.1007/978-1-0716-3008-2_10.
7
Roles and mechanisms of ankyrin-G in neuropsychiatric disorders.
Exp Mol Med. 2022 Jul;54(7):867-877. doi: 10.1038/s12276-022-00798-w. Epub 2022 Jul 6.
8
Data-based stochastic modeling reveals sources of activity bursts in single-cell TGF-β signaling.
PLoS Comput Biol. 2022 Jun 27;18(6):e1010266. doi: 10.1371/journal.pcbi.1010266. eCollection 2022 Jun.
9
Optogenetic Application to Investigating Cell Behavior and Neurological Disease.
Front Cell Neurosci. 2022 Feb 22;16:811493. doi: 10.3389/fncel.2022.811493. eCollection 2022.
10
Optogenetic Approaches for the Spatiotemporal Control of Signal Transduction Pathways.
Int J Mol Sci. 2021 May 18;22(10):5300. doi: 10.3390/ijms22105300.

本文引用的文献

1
Targeting TGF-β Signaling in Cancer.
Trends Cancer. 2017 Jan;3(1):56-71. doi: 10.1016/j.trecan.2016.11.008. Epub 2017 Jan 3.
2
Interrogating cellular perception and decision making with optogenetic tools.
J Cell Biol. 2017 Jan 2;216(1):25-28. doi: 10.1083/jcb.201612094. Epub 2016 Dec 21.
3
TGF-β Signaling from Receptors to Smads.
Cold Spring Harb Perspect Biol. 2016 Sep 1;8(9):a022061. doi: 10.1101/cshperspect.a022061.
4
Transcriptional Control by the SMADs.
Cold Spring Harb Perspect Biol. 2016 Oct 3;8(10):a022079. doi: 10.1101/cshperspect.a022079.
5
Agonists and Antagonists of TGF-β Family Ligands.
Cold Spring Harb Perspect Biol. 2016 Aug 1;8(8):a021923. doi: 10.1101/cshperspect.a021923.
7
Predictive Spatiotemporal Manipulation of Signaling Perturbations Using Optogenetics.
Biophys J. 2015 Nov 3;109(9):1785-97. doi: 10.1016/j.bpj.2015.08.042.
8
Matters of context guide future research in TGFβ superfamily signaling.
Sci Signal. 2015 Oct 20;8(399):re10. doi: 10.1126/scisignal.aad0416.
9
Optogenetic control of endogenous Ca(2+) channels in vivo.
Nat Biotechnol. 2015 Oct;33(10):1092-6. doi: 10.1038/nbt.3350. Epub 2015 Sep 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验