Suppr超能文献

硫掺杂激光诱导多孔石墨烯衍生自聚砜类聚合物和膜。

Sulfur-Doped Laser-Induced Porous Graphene Derived from Polysulfone-Class Polymers and Membranes.

机构信息

Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev , Sede-Boqer Campus 84990, Israel.

Department of Chemistry, Department of Materials Science and NanoEngineering, Smalley-Curl Institute and NanoCarbon Center, Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Rice University , 6100 Main Street, Houston, Texas 77005, United States.

出版信息

ACS Nano. 2018 Jan 23;12(1):289-297. doi: 10.1021/acsnano.7b06263. Epub 2017 Dec 19.

Abstract

Graphene based materials have profoundly impacted research in nanotechnology, and this has significantly advanced biomedical, electronics, energy, and environmental applications. Laser-induced graphene (LIG) is made photothermally and has enabled a rapid route for graphene layers on polyimide surfaces. However, polysulfone (PSU), poly(ether sulfone) (PES), and polyphenylsulfone (PPSU) are highly used in numerous applications including medical, energy, and water treatment and they are critical components of polymer membranes. Here we show LIG fabrication on PSU, PES, and PPSU resulting in conformal sulfur-doped porous graphene embedded in polymer dense films or porous substrates using reagent- and solvent-free methods in a single step. We demonstrate the applicability as flexible electrodes with enhanced electrocatalytic hydrogen peroxide generation, as antifouling surfaces and as antimicrobial hybrid membrane-LIG porous filters. The properties and surface morphology of the conductive PSU-, PES-, and PPSU-LIG could be modulated using variable laser duty cycles. The LIG electrodes showed enhanced hydrogen peroxide generation compared to LIG made on polyimide, and showed exceptional biofilm resistance and potent antimicrobial killing effects when treated with Pseudomonas aeruginosa and mixed bacterial culture. The hybrid PES-LIG membrane-electrode ensured complete elimination of bacterial viability in the permeate (6 log reduction), in a flow-through filtration mode at a water flux of ∼500 L m h (2.5 V) and at ∼22 000 L m h (20 V). Due to the widespread use of PSU, PES, and PPSU in modern society, these functional PSU-, PES-, and PPSU-LIG surfaces have great potential to be incorporated into biomedical, electronic, energy and environmental devices and technologies.

摘要

基于石墨烯的材料在纳米技术研究中产生了深远的影响,这极大地推动了生物医学、电子、能源和环境应用的发展。激光诱导石墨烯(LIG)是通过光热法制成的,为聚酰亚胺表面上的石墨烯层提供了一种快速途径。然而,聚砜(PSU)、聚醚砜(PES)和聚苯砜(PPSU)在许多应用中得到了广泛应用,包括医疗、能源和水处理,它们是聚合物膜的关键组成部分。在这里,我们展示了在 PSU、PES 和 PPSU 上制造 LIG 的方法,使用无试剂和无溶剂的方法,在单个步骤中在聚合物致密膜或多孔基底上形成共形硫掺杂多孔石墨烯。我们证明了它们作为柔性电极的适用性,这些电极具有增强的电催化过氧化氢生成能力、作为抗污表面和作为抗菌混合膜-LIG 多孔过滤器的适用性。通过改变激光占空比,可以调节导电 PSU、PES 和 PPSU-LIG 的性能和表面形貌。与在聚酰亚胺上制造的 LIG 相比,LIG 电极显示出增强的过氧化氢生成能力,并且在用铜绿假单胞菌和混合细菌培养物处理时显示出出色的生物膜抗性和有效的抗菌杀菌效果。在流量过滤模式下,PES-LIG 混合膜-电极在水通量约为 500 L m h(2.5 V)和约 22000 L m h(20 V)时,确保透过液中的细菌活力完全消除(对数减少 6 个)。由于 PSU、PES 和 PPSU 在现代社会中的广泛应用,这些功能化的 PSU、PES 和 PPSU-LIG 表面具有很大的潜力被整合到生物医学、电子、能源和环境设备和技术中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验