Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology , Seoul 02792, Republic of Korea.
SEED Tech. Co. , Bucheon, Gyeonggi-do 14523, Republic of Korea.
ACS Appl Mater Interfaces. 2018 Jan 10;10(1):1067-1076. doi: 10.1021/acsami.7b14048. Epub 2017 Dec 27.
Flexible piezoresistive sensors have huge potential for health monitoring, human-machine interfaces, prosthetic limbs, and intelligent robotics. A variety of nanomaterials and structural schemes have been proposed for realizing ultrasensitive flexible piezoresistive sensors. However, despite the success of recent efforts, high sensitivity within narrower pressure ranges and/or the challenging adhesion and stability issues still potentially limit their broad applications. Herein, we introduce a biomaterial-based scheme for the development of flexible pressure sensors that are ultrasensitive (resistance change by 5 orders) over a broad pressure range of 0.1-100 kPa, promptly responsive (20 ms), and yet highly stable. We show that employing biomaterial-incorporated conductive networks of single-walled carbon nanotubes as interfacial layers of contact-based resistive pressure sensors significantly enhances piezoresistive response via effective modulation of the interlayer resistance and provides stable interfaces for the pressure sensors. The developed flexible sensor is capable of real-time monitoring of wrist pulse waves under external medium pressure levels and providing pressure profiles applied by a thumb and a forefinger during object manipulation at a low voltage (1 V) and power consumption (<12 μW). This work provides a new insight into the material candidates and approaches for the development of wearable health-monitoring and human-machine interfaces.
柔性压阻传感器在健康监测、人机界面、假肢和智能机器人等领域具有巨大的潜力。已经提出了多种纳米材料和结构方案来实现超灵敏的柔性压阻传感器。然而,尽管最近的努力取得了成功,但在更窄的压力范围内实现高灵敏度和/或具有挑战性的附着力和稳定性问题仍然可能限制它们的广泛应用。在此,我们介绍了一种基于生物材料的方案,用于开发柔性压力传感器,该传感器在 0.1-100 kPa 的宽压力范围内具有超灵敏(电阻变化 5 个数量级)、快速响应(20 ms)和高度稳定的特性。我们表明,采用生物材料掺入的单壁碳纳米管作为基于接触的电阻压力传感器的界面层,通过有效调制层间电阻显著增强了压阻响应,并为压力传感器提供了稳定的界面。所开发的柔性传感器能够实时监测外部介质压力水平下的手腕脉搏波,并在低电压(1 V)和低功耗(<12 μW)下提供拇指和食指在操作物体时施加的压力分布。这项工作为可穿戴健康监测和人机界面的发展提供了对材料候选物和方法的新见解。