Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt am Main 60438, Germany.
Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, Am Hubland, Würzburg 97074, Germany.
eNeuro. 2017 Dec 13;4(6). doi: 10.1523/ENEURO.0314-17.2017. eCollection 2017 Nov-Dec.
For the purpose of orientation, echolocating bats emit highly repetitive and spatially directed sonar calls. Echoes arising from call reflections are used to create an acoustic image of the environment. The inferior colliculus (IC) represents an important auditory stage for initial processing of echolocation signals. The present study addresses the following questions: (1) how does the temporal context of an echolocation sequence mimicking an approach flight of an animal affect neuronal processing of distance information to echo delays? (2) how does the IC process complex echolocation sequences containing echo information from multiple objects (multiobject sequence)? Here, we conducted neurophysiological recordings from the IC of ketamine-anaesthetized bats of the species and compared the results from the IC with the ones from the auditory cortex (AC). Neuronal responses to an echolocation sequence was suppressed when compared to the responses to temporally isolated and randomized segments of the sequence. The neuronal suppression was weaker in the IC than in the AC. In contrast to the cortex, the time course of the acoustic events is reflected by IC activity. In the IC, suppression sharpens the neuronal tuning to specific call-echo elements and increases the signal-to-noise ratio in the units' responses. When presenting multiple-object sequences, despite collicular suppression, the neurons responded to each object-specific echo. The latter allows parallel processing of multiple echolocation streams at the IC level. Altogether, our data suggests that temporally-precise neuronal responses in the IC could allow fast and parallel processing of multiple acoustic streams.
为了定位,回声定位蝙蝠会发出高度重复和空间定向的声纳叫声。来自叫声反射的回声被用来创建环境的声学图像。下丘(IC)代表回声定位信号初始处理的重要听觉阶段。本研究提出了以下问题:(1)模拟动物接近飞行的回声序列的时间上下文如何影响对回声延迟的距离信息的神经元处理?(2)IC 如何处理包含来自多个物体的回声信息的复杂回声序列(多物体序列)?在这里,我们从物种的 麻醉蝙蝠的 IC 中进行了神经生理记录,并将 IC 的结果与听觉皮层(AC)的结果进行了比较。与序列中时间上隔离和随机化的片段相比,对回声序列的神经元反应受到抑制。与皮层相比,IC 中的神经元抑制较弱。与皮层不同,IC 中的活动反映了声学事件的时间过程。在 IC 中,抑制使神经元对特定叫声-回声元素的调谐变尖锐,并增加了单位反应中的信噪比。当呈现多个物体序列时,尽管存在丘抑制,神经元仍会对每个特定物体的回声做出反应。后者允许在 IC 级别并行处理多个回声流。总的来说,我们的数据表明,IC 中时间精确的神经元反应可能允许快速并行处理多个声学流。