Macías Silvio, Luo Jinhong, Moss Cynthia F
Department of Psychological and Brain Sciences, Johns Hopkins University , Baltimore, Maryland.
J Neurophysiol. 2018 Sep 1;120(3):1323-1339. doi: 10.1152/jn.00160.2018. Epub 2018 Jun 20.
Echolocating bats must process temporal streams of sonar sounds to represent objects along the range axis. Neuronal echo-delay tuning, the putative mechanism of sonar ranging, has been characterized in the inferior colliculus (IC) of the mustached bat, an insectivorous species that produces echolocation calls consisting of constant frequency and frequency modulated (FM) components, but not in species that use FM signals alone. This raises questions about the mechanisms that give rise to echo-delay tuning in insectivorous bats that use different signal designs. To investigate whether stimulus context may account for species differences in echo-delay selectivity, we characterized single-unit responses in the IC of awake passively listening FM bats, Eptesicus fuscus, to broadcasts of natural sonar call-echo sequences, which contained dynamic changes in signal duration, interval, spectrotemporal structure, and echo-delay. In E. fuscus, neural selectivity to call-echo delay emerges in a population of IC neurons when stimulated with call-echo pairs presented at intervals mimicking those in a natural sonar sequence. To determine whether echo-delay selectivity also depends on the spectrotemporal features of individual sounds within natural sonar sequences, we studied responses to computer-generated echolocation signals that controlled for call interval, duration, bandwidth, sweep rate, and echo-delay. A subpopulation of IC neurons responded selectively to the combination of the spectrotemporal structure of natural call-echo pairs and their temporal patterning within a dynamic sonar sequence. These new findings suggest that the FM bat's fine control over biosonar signal parameters may modulate IC neuronal selectivity to the dimension of echo-delay. NEW & NOTEWORTHY Echolocating bats perform precise auditory temporal computations to estimate their distance to objects. Here, we report that response selectivity of neurons in the inferior colliculus of a frequency modulated bat to call-echo delay, or target range tuning, depends on the temporal patterning and spectrotemporal features of sound elements in a natural echolocation sequence. We suggest that echo responses to objects at different distances are gated by the bat's active control over the spectrotemporal patterning of its sonar emissions.
能够进行回声定位的蝙蝠必须处理声纳声音的时间流,以便在距离轴上表征物体。神经元回声延迟调谐被认为是声纳测距的机制,在食虫性髯蝠的下丘(IC)中已有描述,该物种产生的回声定位叫声由恒定频率和调频(FM)成分组成,但在仅使用FM信号的物种中尚未有相关描述。这就引发了关于使用不同信号设计的食虫性蝙蝠中产生回声延迟调谐的机制的问题。为了研究刺激背景是否可以解释回声延迟选择性的物种差异,我们表征了清醒的被动聆听FM蝙蝠棕蝠(Eptesicus fuscus)IC中单个神经元对自然声纳叫声 - 回声序列广播的反应,这些序列包含信号持续时间、间隔、频谱时间结构和回声延迟的动态变化。在棕蝠中,当用间隔模仿自然声纳序列中的间隔呈现的叫声 - 回声对进行刺激时,IC神经元群体中出现了对叫声 - 回声延迟的神经选择性。为了确定回声延迟选择性是否也取决于自然声纳序列中单个声音的频谱时间特征,我们研究了对计算机生成的回声定位信号的反应,这些信号控制了叫声间隔、持续时间、带宽、扫描速率和回声延迟。IC神经元的一个亚群对自然叫声 - 回声对的频谱时间结构及其在动态声纳序列中的时间模式的组合有选择性反应。这些新发现表明,FM蝙蝠对生物声纳信号参数的精细控制可能会调节IC神经元对回声延迟维度的选择性。新发现且值得注意的是,能够进行回声定位的蝙蝠会进行精确的听觉时间计算以估计它们与物体的距离。在这里,我们报告说,调频蝙蝠下丘中的神经元对叫声 - 回声延迟的反应选择性,即目标距离调谐,取决于自然回声定位序列中声音元素的时间模式和频谱时间特征。我们认为,对不同距离物体的回声反应是由蝙蝠对其声纳发射的频谱时间模式的主动控制所调节的。