Liu Peng-Fei, Wu Yang, Bo Tao, Hou Ling, Xu Juping, Zhang Hui-Jie, Wang Bao-Tian
Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China.
Phys Chem Chem Phys. 2018 Jan 3;20(2):732-737. doi: 10.1039/c7cp07466b.
Searching for new two-dimensional (2D) Dirac cone materials has been popular since the exfoliation of graphene. Herein, based on density functional theory, we predict a novel family of 2D Dirac cone materials in square transition-metal carbides MC (M = Mo, W) which show inherent stability confirmed by phonon spectrum analysis and ab initio molecular dynamics calculations. The Dirac point, located exactly at the Fermi level, mainly arises from the hybridization of M-d and C-p orbitals which gives rise to an ultrahigh Fermi velocity comparable to that of graphene. Moreover, strong spin-orbit coupling related to M-d electrons can generate large band gaps of 35 and 89 meV for MoC and WC monolayers, respectively, which allows MC materials to be operable at room temperature (26 meV), as candidates for nanoelectronics in the upcoming post-silicon era. The conceived novel stable metal-carbon framework materials provide a platform for designing 2D Dirac cone materials.
自从石墨烯被剥离以来,寻找新型二维(2D)狄拉克锥材料一直备受关注。在此,基于密度泛函理论,我们预测了一类新型的二维狄拉克锥材料,即方形过渡金属碳化物MC(M = Mo,W),通过声子谱分析和从头算分子动力学计算证实了其具有固有稳定性。狄拉克点恰好位于费米能级,主要源于M-d和C-p轨道的杂化,这导致了与石墨烯相当的超高费米速度。此外,与M-d电子相关的强自旋轨道耦合分别可为MoC和WC单层产生35和89 meV的大带隙,这使得MC材料在室温下(26 meV)即可工作,有望成为即将到来的后硅时代纳米电子学的候选材料。所设想的新型稳定金属-碳骨架材料为设计二维狄拉克锥材料提供了一个平台。