College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia.
Chem Soc Rev. 2018 Jan 2;47(1):231-268. doi: 10.1039/c7cs00607a.
Cysteine residues in proteins are subject to diverse redox chemistry. Oxidation of cysteine to S-nitrosocysteine, cysteine sulfenic and sulfinic acids, disulfides and persulfides are a few prominent examples of these oxidative post-translational modifications. In living organisms, these modifications often play key roles in cell signalling and protein function, but a full account of this biochemistry is far from complete. It is therefore an important goal in chemical biology to identify what proteins are subjected to these modifications and understand their physiological function. This review provides an overview of these modifications, how they can be detected and quantified using chemical probes, and how this information provides insight into their role in biology. This survey also highlights future opportunities in the study of cysteine redox chemistry, the challenges that await chemists and biologists in this area of study, and how meeting such challenges might reveal valuable information for biomedical science.
蛋白质中的半胱氨酸残基会受到各种氧化还原化学的影响。半胱氨酸氧化为 S-亚硝基半胱氨酸、半胱氨酸亚磺酸和亚硫酸、二硫键和过硫键只是这些氧化翻译后修饰的几个突出例子。在活生物体中,这些修饰通常在细胞信号转导和蛋白质功能中发挥关键作用,但对这种生物化学的全面了解还远远不够。因此,在化学生物学中,确定哪些蛋白质受到这些修饰以及了解它们的生理功能是一个重要的目标。这篇综述概述了这些修饰、如何使用化学探针检测和定量这些修饰,以及这些信息如何提供对它们在生物学中作用的深入了解。本调查还突出了半胱氨酸氧化还原化学研究的未来机会、化学家在这一研究领域面临的挑战,以及如何应对这些挑战可能为生物医学科学揭示有价值的信息。