Choi Hyunwoo, Kim Sumin, Kwak Minjoon, Gwak Yunki, Jeong Keunhong, Seo Youngran, Yoo Dongwon
Department of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.
Missile Research Institute, Agency for Defense Development, Daejeon 34186, Republic of Korea.
ACS Nano. 2024 Dec 17;18(50):33953-33963. doi: 10.1021/acsnano.4c07999. Epub 2024 Nov 27.
Production of HO using heterogeneous semiconductor photocatalysts has emerged as an ecofriendly and practical approach across various applications, ranging from environmental detoxification to fuel cells and chemical synthesis. Extensive efforts have been devoted to engineering semiconductors to enhance their catalytic capabilities for HO production. However, in chemical synthesis, the utilization of the potent oxidant HO can present challenges in selectively oxidizing organic compounds. In this study, we introduce copper atoms into carbon nitride (Cu/CN), facilitating the generation of hydroperoxyl radicals (·OOH) as primary reactive oxidants and offering reaction conditions entirely devoid of HO via the Fenton reaction. Cu/CN demonstrates selective oxidation of thiols to disulfides, in contrast to other current heterogeneous photocatalysts that yield undesired overoxidized side products, such as thiosulfinate and thiosulfonate. Cu/CN's controllable capacity for specific ROS generation, broad substrate scopes, and recyclability empower greener and highly selective photooxidation of organic compounds.
使用多相半导体光催化剂生产羟基自由基(HO)已成为一种环保且实用的方法,应用广泛,涵盖从环境解毒到燃料电池和化学合成等各个领域。人们已付出大量努力对半导体进行工程设计,以提高其生产HO的催化能力。然而,在化学合成中,使用强氧化剂HO在选择性氧化有机化合物方面可能会带来挑战。在本研究中,我们将铜原子引入氮化碳(Cu/CN)中,促进作为主要活性氧化剂的氢过氧自由基(·OOH)的生成,并通过芬顿反应提供完全不含HO的反应条件。与其他目前会产生不需要的过度氧化副产物(如硫代亚磺酸盐和硫代磺酸盐)的多相光催化剂相比,Cu/CN表现出将硫醇选择性氧化为二硫化物的能力。Cu/CN生成特定活性氧的可控能力、广泛的底物范围和可回收性,使其能够实现更绿色、更高选择性的有机化合物光氧化。