Suppr超能文献

使用计算方法预测正常和颅缝早闭小鼠的颅骨生长。

Predicting calvarial growth in normal and craniosynostotic mice using a computational approach.

作者信息

Marghoub Arsalan, Libby Joseph, Babbs Christian, Pauws Erwin, Fagan Michael J, Moazen Mehran

机构信息

Department of Mechanical Engineering, University College London, London, UK.

Medical and Biological Engineering, School of Engineering and Computer Science, University of Hull, Hull, UK.

出版信息

J Anat. 2018 Mar;232(3):440-448. doi: 10.1111/joa.12764. Epub 2017 Dec 15.

Abstract

During postnatal calvarial growth the brain grows gradually and the overlying bones and sutures accommodate that growth until the later juvenile stages. The whole process is coordinated through a complex series of biological, chemical and perhaps mechanical signals between various elements of the craniofacial system. The aim of this study was to investigate to what extent a computational model can accurately predict the calvarial growth in wild-type (WT) and mutant type (MT) Fgfr2 mice displaying bicoronal suture fusion. A series of morphological studies were carried out to quantify the calvarial growth at P3, P10 and P20 in both mouse types. MicroCT images of a P3 specimen were used to develop a finite element model of skull growth to predict the calvarial shape of WT and MT mice at P10. Sensitivity tests were performed and the results compared with ex vivo P10 data. Although the models were sensitive to the choice of input parameters, they predicted the overall skull growth in the WT and MT mice. The models also captured the difference between the ex vivoWT and MT mice. This modelling approach has the potential to be translated to human skull growth and to enhance our understanding of the different reconstruction methods used to manage clinically the different forms of craniosynostosis, and in the long term possibly reduce the number of re-operations in children displaying this condition and thereby enhance their quality of life.

摘要

在出生后的颅骨生长过程中,大脑逐渐发育,覆盖其上的骨骼和缝线会适应这种生长,直至青少年后期。整个过程通过颅面系统各组成部分之间一系列复杂的生物、化学乃至机械信号进行协调。本研究的目的是探究计算模型在何种程度上能够准确预测野生型(WT)和显示双冠状缝融合的突变型(MT)Fgfr2小鼠的颅骨生长情况。开展了一系列形态学研究,以量化两种小鼠在出生后第3天(P3)、第10天(P10)和第20天(P20)的颅骨生长情况。利用一个P3标本的显微CT图像建立了颅骨生长的有限元模型,以预测WT和MT小鼠在P10时的颅骨形状。进行了敏感性测试,并将结果与P10时的体外数据进行比较。尽管模型对输入参数的选择较为敏感,但它们预测了WT和MT小鼠的整体颅骨生长情况。模型还捕捉到了体外WT和MT小鼠之间的差异。这种建模方法有可能应用于人类颅骨生长研究,并增进我们对用于临床治疗不同形式颅缝早闭的不同重建方法的理解,从长远来看,可能会减少患有这种疾病儿童的再次手术次数,从而提高他们的生活质量。

相似文献

3
Mechanical properties of calvarial bones in a mouse model for craniosynostosis.颅缝早闭小鼠模型中颅骨的力学性能
PLoS One. 2015 May 12;10(5):e0125757. doi: 10.1371/journal.pone.0125757. eCollection 2015.
10
Intracranial pressure changes during mouse development.小鼠发育过程中的颅内压变化。
J Biomech. 2016 Jan 4;49(1):123-126. doi: 10.1016/j.jbiomech.2015.11.012. Epub 2015 Nov 18.

引用本文的文献

2
A physico-mechanical model of postnatal craniofacial growth in human.人类出生后颅面生长的物理力学模型。
iScience. 2024 Jul 29;27(9):110617. doi: 10.1016/j.isci.2024.110617. eCollection 2024 Sep 20.
6
Mouse embryo phenotyping using X-ray microCT.使用X射线显微CT对小鼠胚胎进行表型分析。
Front Cell Dev Biol. 2022 Sep 16;10:949184. doi: 10.3389/fcell.2022.949184. eCollection 2022.
9
Extracellular Matrix in Human Craniofacial Development.细胞外基质在人类颅面发育中的作用。
J Dent Res. 2022 May;101(5):495-504. doi: 10.1177/00220345211052982. Epub 2021 Dec 7.

本文引用的文献

1
Cell Mechanics of Craniosynostosis.颅缝早闭的细胞力学
ACS Biomater Sci Eng. 2017 Nov 13;3(11):2733-2743. doi: 10.1021/acsbiomaterials.6b00557. Epub 2016 Dec 14.
3
Functional and evolutionary consequences of cranial fenestration in birds.鸟类颅骨开孔的功能及进化后果
Evolution. 2017 May;71(5):1327-1338. doi: 10.1111/evo.13210. Epub 2017 Mar 17.
5
Increase of prevalence of craniosynostosis.颅缝早闭患病率的增加。
J Craniomaxillofac Surg. 2016 Sep;44(9):1273-9. doi: 10.1016/j.jcms.2016.07.007. Epub 2016 Jul 12.
7
Intracranial pressure changes during mouse development.小鼠发育过程中的颅内压变化。
J Biomech. 2016 Jan 4;49(1):123-126. doi: 10.1016/j.jbiomech.2015.11.012. Epub 2015 Nov 18.
9
Mechanical properties of calvarial bones in a mouse model for craniosynostosis.颅缝早闭小鼠模型中颅骨的力学性能
PLoS One. 2015 May 12;10(5):e0125757. doi: 10.1371/journal.pone.0125757. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验