Peskett Emma, Kumar Samin, Baird William, Jaiswal Janhvi, Li Ming, Patel Priyanca, Britto Jonathan A, Pauws Erwin
UCL Great Ormond Street, Institute of Child Health, University College London, London, WC1N 1EH, UK.
Craniofacial Unit, Great Ormond Street Hospital, London, WC1N 3JH, UK.
Biol Open. 2017 Feb 15;6(2):223-231. doi: 10.1242/bio.022178.
Syndromic craniosynostosis caused by mutations in is characterised by developmental pathology in both endochondral and membranous skeletogenesis. Detailed phenotypic characterisation of features in the membranous calvarium, the endochondral cranial base and other structures in the axial and appendicular skeleton has not been performed at embryonic stages. We investigated bone development in the Crouzon mouse model () at pre- and post-ossification stages to improve understanding of the underlying pathogenesis. Phenotypic analysis was performed by whole-mount skeletal staining (Alcian Blue/Alizarin Red) and histological staining of sections of CD1 wild-type (WT), heterozygous (HET) and homozygous (HOM) mouse embryos from embryonic day (E)12.5-E17.5 stages. Gene expression (, , and ) was studied by hybridisation and protein expression (COL2A1) by immunohistochemistry. Our analysis has identified severely decreased osteogenesis in parts of the craniofacial skeleton together with increased chondrogenesis in parts of the endochondral and cartilaginous skeleton in HOM embryos. The expression domain in tracheal and basi-cranial chondrocytic precursors at E13.5 in HOM embryos is increased and expanded, correlating with the phenotypic observations which suggest FGFR2 signalling regulates expression. Combined with abnormal staining of type II collagen in pre-chondrocytic mesenchyme, this is indicative of a mesenchymal condensation defect. An expanded spectrum of phenotypic features observed in the mouse embryo paves the way towards better understanding the clinical attributes of human Crouzon-Pfeiffer syndrome. mutation results in impaired skeletogenesis; however, our findings suggest that many phenotypic aberrations stem from a primary failure of pre-chondrogenic/osteogenic mesenchymal condensation and link FGFR2 to SOX9, a principal regulator of skeletogenesis.
由 突变引起的综合征性颅缝早闭的特征是软骨内成骨和膜内成骨发育过程中的病理变化。在胚胎阶段,尚未对膜性颅盖、软骨内颅底以及轴骨和附肢骨骼中其他结构的特征进行详细的表型特征描述。我们研究了Crouzon小鼠模型()在骨化前和骨化后的骨骼发育情况,以加深对潜在发病机制的理解。通过全胚骨骼染色(阿尔新蓝/茜素红)以及对胚胎第(E)12.5 - E17.5阶段的CD1野生型(WT)、 杂合子(HET)和 纯合子(HOM)小鼠胚胎切片进行组织学染色来进行表型分析。通过原位杂交研究基因表达(、、 和 ),通过免疫组织化学研究蛋白质表达(COL2A1)。我们的分析发现,HOM胚胎中颅面部骨骼部分的成骨作用严重降低,同时软骨内和软骨骨骼部分的软骨生成增加。HOM胚胎在E13.5时气管和颅底软骨细胞前体中的 表达域增加并扩大,这与表型观察结果相关,表明FGFR2信号调节 表达。结合软骨前间充质中II型胶原蛋白的异常染色,这表明存在间充质凝聚缺陷。在 小鼠胚胎中观察到的扩展的表型特征谱为更好地理解人类Crouzon - Pfeiffer综合征的临床特征铺平了道路。 突变导致骨骼生成受损;然而,我们的研究结果表明,许多表型异常源于软骨前/成骨间充质凝聚的原发性失败,并将FGFR2与骨骼生成的主要调节因子SOX9联系起来。