Department of Energy, Building and Environment, Mälardalen University , 72123 Västerås, Sweden.
ACS Appl Mater Interfaces. 2018 Jan 10;10(1):517-525. doi: 10.1021/acsami.7b14166. Epub 2017 Dec 26.
Nickel (Ni) nanoparticles (NPs) with controlled sizes in the range of 4.9-27.4 nm are synthesized by tuning the ratio of the nickel acetylacetonate precursor and trioctylphosphine in the presence of oleylamine. X-ray diffraction and transmission electron microscopy confirm the formation of the metallic Ni crystal phase and their monodispersed nature. These Ni NPs are found to be effective catalysts for the hydrolytic dehydrogenation of ammonia borane, and their catalytic activities are size-dependent. A volcano-type activity trend is observed with 8.9 nm Ni NPs presenting the best catalytic performance. The activation energy and turnover frequency (TOF) of the 8.9 nm NP catalyst are further calculated to be 66.6 kJ·mol and 154.2 mol·mol·h, respectively. Characterization of the spent catalysts indicates that smaller-sized NPs face severe agglomeration, resulting in poor stability and activity. Three carbon support materials are thus used to disperse and stabilize the Ni NPs. It shows that 8.9 nm Ni NPs supported on Ketjenblack (KB) exhibit higher activity than that supported on carbon nanotubes and graphene nanoplatelets. The agglomeration-induced activity loss is further illustrated by immobilizing 4.9 nm Ni NPs onto KB, which exhibits significantly enhanced activity with a high TOF of 447.9 mol·mol·h as well as an excellent reusability in the consecutive dehydrogenation of ammonia borane. The high catalytic performance can be attributed to the intrinsic activity of nanoparticulate Ni and the improved activity and stability due to the strong Ni/KB metal-support interactions.
镍(Ni)纳米颗粒(NPs)的尺寸在 4.9-27.4nm 范围内可控,通过调节乙酰丙酮镍前体和三辛基膦在油胺存在下的比例来合成。X 射线衍射和透射电子显微镜证实了金属 Ni 晶相的形成及其单分散性。这些 Ni NPs 被发现是氨硼烷水解脱氢的有效催化剂,其催化活性与尺寸有关。观察到火山型活性趋势,8.9nm Ni NPs 表现出最佳的催化性能。进一步计算了 8.9nm NP 催化剂的活化能和周转频率(TOF),分别为 66.6kJ·mol 和 154.2mol·mol·h。对失活催化剂的表征表明,较小尺寸的 NPs 面临严重的团聚,导致稳定性和活性差。因此,使用三种碳载体材料来分散和稳定 Ni NPs。结果表明,负载在 Ketjenblack(KB)上的 8.9nm Ni NPs 比负载在碳纳米管和石墨烯纳米片上的具有更高的活性。通过将 4.9nm Ni NPs 固定在 KB 上,进一步说明了团聚诱导的活性损失,其具有高达 447.9mol·mol·h 的高 TOF 和在氨硼烷连续脱氢中的优异可重复使用性。高催化性能归因于纳米颗粒 Ni 的固有活性以及由于 Ni/KB 金属-载体相互作用增强而提高的活性和稳定性。