Schneider Eugenia, Mangold Michael
Max-Planck-Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany.
Technische Hochschule Bingen, University of applied sciences, 55411 Bingen am Rhein, Germany.
Biosystems. 2018 Mar;165:8-21. doi: 10.1016/j.biosystems.2017.12.004. Epub 2017 Dec 13.
The bottom-up approach of synthetic biology is driven by the need for a deepened understanding of the interaction of functional modules in living or artificial systems. The hope is that the gained knowledge will help to optimize existing systems, or, as one long-term goal of synthetic biology, to build up artificial cell-like entities from single building blocks. This article focuses on a system theoretic approach to synthetic biology, and in particular on the construction of a protocell model by the modular assembling process. Different models for an in-silico protocell are described that combines experimentally validated biological subsystems with theoretical assumptions. The in-silico protocell that is characterized consists of three different functional modules: the membrane proliferating module, the membrane contraction module, and a positioning module. Additional theoretical hypotheses are tested in order to merge the module models to one protocell model with synchronously working parts. The different approaches used here for developing a protocell model could be helpful for assembling the different modules to one system in reality. Depending on the objective one wants to achieve a more or less detailed modeling approach is appropriate.
合成生物学的自下而上方法是由深入理解生物或人工系统中功能模块相互作用的需求所驱动的。人们希望所获得的知识将有助于优化现有系统,或者,作为合成生物学的一个长期目标,从单个构建模块构建类似人工细胞的实体。本文重点介绍了一种合成生物学的系统理论方法,特别是通过模块化组装过程构建原细胞模型。描述了不同的计算机模拟原细胞模型,这些模型将经过实验验证的生物子系统与理论假设相结合。所描述的计算机模拟原细胞由三个不同的功能模块组成:膜增殖模块、膜收缩模块和定位模块。为了将模块模型合并为一个具有同步工作部件的原细胞模型,还测试了其他理论假设。这里用于开发原细胞模型的不同方法可能有助于在现实中将不同模块组装成一个系统。根据想要实现的目标,或多或少详细的建模方法都是合适的。