Suppr超能文献

磷脂酶 Rv3802 的脂质结合结构基础与作用机制

Structural basis for lipid binding and mechanism of the Rv3802 phospholipase.

机构信息

From the Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606-3390 and.

the Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831.

出版信息

J Biol Chem. 2018 Jan 26;293(4):1363-1372. doi: 10.1074/jbc.RA117.000240. Epub 2017 Dec 15.

Abstract

The gene encodes an essential enzyme with thioesterase and phospholipase A activity. Overexpression of Rv3802 orthologs in and increases mycolate content and decreases glycerophospholipids. Although a role in modulating the lipid composition of the unique mycomembrane has been proposed, the true biological function of Rv3802 remains uncertain. In this study, we present the first Rv3802 X-ray crystal structure, solved to 1.7 Å resolution. On the basis of the binding of PEG molecules to Rv3802, we identified its lipid-binding site and the structural basis for phosphatidyl-based substrate binding and phospholipase A activity. We found that movement of the α8-helix affords lipid binding and is required for catalytic turnover through covalent tethering. We gained insights into the mechanism of acyl hydrolysis by observing differing arrangements of PEG and water molecules within the active site. This study provides structural insights into biological function and facilitates future structure-based drug design toward Rv3802.

摘要

该基因编码一种具有硫酯酶和磷脂酶 A 活性的必需酶。在 和 中过表达 Rv3802 同源物会增加分枝菌酸含量并降低甘油磷脂。尽管已经提出了在调节独特的类脂膜的脂类组成中的作用,但 Rv3802 的真正生物学功能仍不确定。在这项研究中,我们首次解析了 Rv3802 的 X 射线晶体结构,分辨率为 1.7 Å。基于 PEG 分子与 Rv3802 的结合,我们确定了其脂质结合位点以及基于磷脂的底物结合和磷脂酶 A 活性的结构基础。我们发现α8-螺旋的运动可提供脂质结合,并通过共价连接来催化反应的转化。通过观察活性位点内 PEG 和水分子的不同排列,我们深入了解了酰基水解的机制。这项研究提供了对生物学功能的结构见解,并为未来针对 Rv3802 的基于结构的药物设计提供了便利。

相似文献

1
Structural basis for lipid binding and mechanism of the Rv3802 phospholipase.
J Biol Chem. 2018 Jan 26;293(4):1363-1372. doi: 10.1074/jbc.RA117.000240. Epub 2017 Dec 15.
3
Characterization of Tetrahydrolipstatin and Stereoderivatives on the Inhibition of Essential Mycobacterium tuberculosis Lipid Esterases.
Biochemistry. 2018 Apr 24;57(16):2383-2393. doi: 10.1021/acs.biochem.8b00152. Epub 2018 Apr 10.
4
Tetrahydrolipstatin inhibition, functional analyses, and three-dimensional structure of a lipase essential for mycobacterial viability.
J Biol Chem. 2010 Sep 24;285(39):30050-60. doi: 10.1074/jbc.M110.150094. Epub 2010 Jul 23.
5
Mycolyltransferase from in covalent complex with tetrahydrolipstatin provides insights into antigen 85 catalysis.
J Biol Chem. 2018 Mar 9;293(10):3651-3662. doi: 10.1074/jbc.RA117.001681. Epub 2018 Jan 19.
7
The crystal structure of Rv2991 from Mycobacterium tuberculosis: An F binding protein with unknown function.
J Struct Biol. 2019 May 1;206(2):216-224. doi: 10.1016/j.jsb.2019.03.006. Epub 2019 Mar 16.
8
Structural insights into phosphopantetheinyl hydrolase PptH from Mycobacterium tuberculosis.
Protein Sci. 2020 Mar;29(3):744-757. doi: 10.1002/pro.3813. Epub 2020 Jan 20.

引用本文的文献

1
Synthetic mycolates derivatives to decipher protein mycoloylation, a unique post-translational modification in bacteria.
J Biol Chem. 2025 Mar;301(3):108243. doi: 10.1016/j.jbc.2025.108243. Epub 2025 Jan 27.
3
Biochemical and microbiological evaluation of -aryl urea derivatives against mycobacteria and mycobacterial hydrolases.
Medchemcomm. 2019 Jun 4;10(7):1197-1204. doi: 10.1039/c9md00122k. eCollection 2019 Jul 1.
5
Characterization of Tetrahydrolipstatin and Stereoderivatives on the Inhibition of Essential Mycobacterium tuberculosis Lipid Esterases.
Biochemistry. 2018 Apr 24;57(16):2383-2393. doi: 10.1021/acs.biochem.8b00152. Epub 2018 Apr 10.

本文引用的文献

1
Tuberculosis.
Nat Rev Dis Primers. 2016 Oct 27;2:16076. doi: 10.1038/nrdp.2016.76.
2
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
4
Introduction to Thematic Review Series: Phospholipases: Central Role in Lipid Signaling and Disease.
J Lipid Res. 2015 Jul;56(7):1245-7. doi: 10.1194/jlr.E061101. Epub 2015 Jun 1.
5
JPred4: a protein secondary structure prediction server.
Nucleic Acids Res. 2015 Jul 1;43(W1):W389-94. doi: 10.1093/nar/gkv332. Epub 2015 Apr 16.
6
Membranes serve as allosteric activators of phospholipase A2, enabling it to extract, bind, and hydrolyze phospholipid substrates.
Proc Natl Acad Sci U S A. 2015 Feb 10;112(6):E516-25. doi: 10.1073/pnas.1424651112. Epub 2015 Jan 26.
7
The mycobacterial cell envelope-lipids.
Cold Spring Harb Perspect Med. 2014 Aug 7;4(10):a021105. doi: 10.1101/cshperspect.a021105.
8
SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information.
Nucleic Acids Res. 2014 Jul;42(Web Server issue):W252-8. doi: 10.1093/nar/gku340. Epub 2014 Apr 29.
9
Mycolic acids: structures, biosynthesis, and beyond.
Chem Biol. 2014 Jan 16;21(1):67-85. doi: 10.1016/j.chembiol.2013.11.011. Epub 2013 Dec 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验