Suppr超能文献

一种具有全平面变形控制的新型小样本平面双轴测试系统。

A Novel Small-Specimen Planar Biaxial Testing System With Full In-Plane Deformation Control.

作者信息

Potter Samuel, Graves Jordan, Drach Borys, Leahy Thomas, Hammel Chris, Feng Yuan, Baker Aaron, Sacks Michael S

机构信息

Department of Mechanical Engineering, Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, 240 East 24th Street, Austin, TX 78712.

Department of Biomedical Engineering, Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, , Austin, TX 78712.

出版信息

J Biomech Eng. 2018 May 1;140(5):0510011-05100118. doi: 10.1115/1.4038779.

Abstract

Simulations of soft tissues require accurate and robust constitutive models, whose form is derived from carefully designed experimental studies. For such investigations of membranes or thin specimens, planar biaxial systems have been used extensively. Yet, all such systems remain limited in their ability to: (1) fully prescribe in-plane deformation gradient tensor F2D, (2) ensure homogeneity of the applied deformation, and (3) be able to accommodate sufficiently small specimens to ensure a reasonable degree of material homogeneity. To address these issues, we have developed a novel planar biaxial testing device that overcomes these difficulties and is capable of full control of the in-plane deformation gradient tensor F2D and of testing specimens as small as ∼4 mm × ∼4 mm. Individual actuation of the specimen attachment points, combined with a robust real-time feedback control, enabled the device to enforce any arbitrary F2D with a high degree of accuracy and homogeneity. Results from extensive device validation trials and example tissues illustrated the ability of the device to perform as designed and gather data needed for developing and validating constitutive models. Examples included the murine aortic tissues, allowing for investigators to take advantage of the genetic manipulation of murine disease models. These capabilities highlight the potential of the device to serve as a platform for informing and verifying the results of inverse models and for conducting robust, controlled investigation into the biomechanics of very local behaviors of soft tissues and membrane biomaterials.

摘要

软组织模拟需要精确且稳健的本构模型,其形式源自精心设计的实验研究。对于此类膜或薄样本的研究,平面双轴系统已被广泛使用。然而,所有此类系统在以下方面仍存在局限性:(1)完全规定平面内变形梯度张量F2D,(2)确保所施加变形的均匀性,以及(3)能够容纳足够小的样本以确保合理程度的材料均匀性。为了解决这些问题,我们开发了一种新型平面双轴测试装置,该装置克服了这些困难,能够完全控制平面内变形梯度张量F2D,并能够测试小至约4毫米×约4毫米的样本。样本附着点的单独驱动,结合强大的实时反馈控制,使该装置能够以高度的准确性和均匀性强制实现任何任意的F2D。广泛的装置验证试验和示例组织的结果表明,该装置能够按设计运行,并收集开发和验证本构模型所需的数据。示例包括小鼠主动脉组织,使研究人员能够利用小鼠疾病模型的基因操作。这些能力突出了该装置作为一个平台的潜力,可用于为逆模型的结果提供信息和验证,并对软组织和膜生物材料的非常局部行为的生物力学进行稳健、可控的研究。

相似文献

1
A Novel Small-Specimen Planar Biaxial Testing System With Full In-Plane Deformation Control.
J Biomech Eng. 2018 May 1;140(5):0510011-05100118. doi: 10.1115/1.4038779.
2
A generalized method for the analysis of planar biaxial mechanical data using tethered testing configurations.
J Biomech Eng. 2015 Jun;137(6):064501. doi: 10.1115/1.4029266. Epub 2015 Apr 15.
3
Characterization of mechanical properties of pericardium tissue using planar biaxial tension and flexural deformation.
J Mech Behav Biomed Mater. 2018 Jan;77:148-156. doi: 10.1016/j.jmbbm.2017.08.039. Epub 2017 Sep 13.
4
A method for planar biaxial mechanical testing that includes in-plane shear.
J Biomech Eng. 1999 Oct;121(5):551-5. doi: 10.1115/1.2835086.
5
How important is sample alignment in planar biaxial testing of anisotropic soft biological tissues? A finite element study.
J Mech Behav Biomed Mater. 2018 Dec;88:201-216. doi: 10.1016/j.jmbbm.2018.06.024. Epub 2018 Jul 18.
8
Predictive capabilities of various constitutive models for arterial tissue.
J Mech Behav Biomed Mater. 2018 Feb;78:369-380. doi: 10.1016/j.jmbbm.2017.11.035. Epub 2017 Nov 22.
10
Planar biaxial testing of heart valve cusp replacement biomaterials: Experiments, theory and material constants.
Acta Biomater. 2016 Nov;45:303-320. doi: 10.1016/j.actbio.2016.08.036. Epub 2016 Aug 26.

引用本文的文献

1
Experimental Protocols to Test Aortic Soft Tissues: A Systematic Review.
Bioengineering (Basel). 2024 Jul 23;11(8):745. doi: 10.3390/bioengineering11080745.
2
Biaxial testing system for characterization of mechanical and rupture properties of small samples.
HardwareX. 2022 Jun 28;12:e00333. doi: 10.1016/j.ohx.2022.e00333. eCollection 2022 Oct.
3
Anisotropic elastic behavior of a hydrogel-coated electrospun polyurethane: Suitability for heart valve leaflets.
J Mech Behav Biomed Mater. 2022 Jan;125:104877. doi: 10.1016/j.jmbbm.2021.104877. Epub 2021 Oct 14.
6
Biaxial Mechanical Characterizations of Atrioventricular Heart Valves.
J Vis Exp. 2019 Apr 9(146). doi: 10.3791/59170.
7
An investigation of the anisotropic mechanical properties and anatomical structure of porcine atrioventricular heart valves.
J Mech Behav Biomed Mater. 2018 Nov;87:155-171. doi: 10.1016/j.jmbbm.2018.07.024. Epub 2018 Jul 18.

本文引用的文献

1
An inverse modeling approach for semilunar heart valve leaflet mechanics: exploitation of tissue structure.
Biomech Model Mechanobiol. 2016 Aug;15(4):909-32. doi: 10.1007/s10237-015-0732-7. Epub 2015 Oct 8.
2
A generalized method for the analysis of planar biaxial mechanical data using tethered testing configurations.
J Biomech Eng. 2015 Jun;137(6):064501. doi: 10.1115/1.4029266. Epub 2015 Apr 15.
3
Simulation of planar soft tissues using a structural constitutive model: Finite element implementation and validation.
J Biomech. 2014 Jun 27;47(9):2043-54. doi: 10.1016/j.jbiomech.2014.03.014. Epub 2014 Mar 21.
5
Biomechanical phenotyping of central arteries in health and disease: advantages of and methods for murine models.
Ann Biomed Eng. 2013 Jul;41(7):1311-30. doi: 10.1007/s10439-013-0799-1. Epub 2013 Apr 3.
7
Mechanics of the mitral valve: a critical review, an in vivo parameter identification, and the effect of prestrain.
Biomech Model Mechanobiol. 2013 Oct;12(5):1053-71. doi: 10.1007/s10237-012-0462-z. Epub 2012 Dec 21.
8
Acute mechanical effects of elastase on the infrarenal mouse aorta: implications for models of aneurysms.
J Biomech. 2012 Feb 23;45(4):660-5. doi: 10.1016/j.jbiomech.2011.12.013. Epub 2012 Jan 10.
9
Time course of carotid artery growth and remodeling in response to altered pulsatility.
Am J Physiol Heart Circ Physiol. 2010 Dec;299(6):H1875-83. doi: 10.1152/ajpheart.00872.2009. Epub 2010 Sep 17.
10
Generalized anisotropic inverse mechanics for soft tissues.
J Biomech Eng. 2010 Aug;132(8):081006. doi: 10.1115/1.4001257.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验