Suppr超能文献

残余及变换选择对软组织生物力学参数估计计算方面的影响

Effect of Residual and Transformation Choice on Computational Aspects of Biomechanical Parameter Estimation of Soft Tissues.

作者信息

Aggarwal Ankush

机构信息

Glasgow Computational Engineering Centre, School of Engineering, University of Glasgow, Glasgow G12 8LT, UK.

出版信息

Bioengineering (Basel). 2019 Oct 29;6(4):100. doi: 10.3390/bioengineering6040100.

Abstract

Several nonlinear and anisotropic constitutive models have been proposed to describe the biomechanical properties of soft tissues, and reliably estimating the unknown parameters in these models using experimental data is an important step towards developing predictive capabilities. However, the effect of parameter estimation technique on the resulting biomechanical parameters remains under-analyzed. Standard off-the-shelf techniques can produce unreliable results where the parameters are not uniquely identified and can vary with the initial guess. In this study, a thorough analysis of parameter estimation techniques on the resulting properties for four multi-parameter invariant-based constitutive models is presented. It was found that linear transformations have no effect on parameter estimation for the presented cases, and nonlinear transforms are necessary for any improvement. A distinct focus is put on the issue of non-convergence, and we propose simple modifications that not only improve the speed of convergence but also avoid convergence to a wrong solution. The proposed modifications are straightforward to implement and can avoid severe problems in the biomechanical analysis. The results also show that including the fiber angle as an unknown in the parameter estimation makes it extremely challenging, where almost all of the formulations and models fail to converge to the true solution. Therefore, until this issue is resolved, a non-mechanical-such as optical-technique for determining the fiber angle is required in conjunction with the planar biaxial test for a robust biomechanical analysis.

摘要

已经提出了几种非线性和各向异性本构模型来描述软组织的生物力学特性,利用实验数据可靠地估计这些模型中的未知参数是发展预测能力的重要一步。然而,参数估计技术对所得生物力学参数的影响仍未得到充分分析。标准的现成技术在参数未被唯一识别且可能随初始猜测而变化的情况下会产生不可靠的结果。在本研究中,对四种基于多参数不变量的本构模型的参数估计技术对所得特性的影响进行了全面分析。结果发现,线性变换对所呈现的情况的参数估计没有影响,而非线性变换对于任何改进都是必要的。特别关注了不收敛的问题,我们提出了简单的修改方法,这些方法不仅提高了收敛速度,还避免收敛到错误的解。所提出的修改易于实施,可以避免生物力学分析中的严重问题。结果还表明,在参数估计中把纤维角度作为未知数会使其极具挑战性,几乎所有的公式和模型都无法收敛到真实解。因此,在这个问题得到解决之前,需要一种非机械的(如光学的)技术来确定纤维角度,并结合平面双轴试验进行稳健的生物力学分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5072/6956274/140c703281a4/bioengineering-06-00100-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验