Cronín C N, Nolan D P, Voorheis H P
Department of Biochemistry, Trinity College, Dublin, Ireland.
FEBS Lett. 1989 Feb 13;244(1):26-30. doi: 10.1016/0014-5793(89)81154-8.
The specific activities of each of the enzymes of the classical pentose phosphate pathway have been determined in both cultured procyclic and bloodstream forms of Trypanosoma brucei. Both forms contained glucose-6-phosphate dehydrogenase (EC 1.1.1.49), 6-phosphogluconolactonase (EC 3.1.1.31), 6-phosphogluconate dehydrogenase (EC 1.1.1.44), ribose-5-phosphate isomerase (EC 5.3.1.6) and transaldolase (EC 2.2.1.2). However, ribulose-5-phosphate 3'-epimerase (EC 5.1.3.1) and transketolase (EC 2.2.1.1) activities were detectable only in procyclic forms. These results clearly demonstrate that both forms of T. brucei can metabolize glucose via the oxidative segment of the classical pentose phosphate pathway in order to produce D-ribose-5-phosphate for the synthesis of nucleic acids and reduced NADP for other synthetic reactions. However, only procyclic forms are capable of using the non-oxidative segment of the classical pentose phosphate pathway to cycle carbon between pentose and hexose phosphates in order to produce D-glyceraldehyde 3-phosphate as a net product of the pathway. Both forms lack the key gluconeogenic enzyme, fructose-bisphosphatase (EC 3.1.3.11). Consequently, neither form should be able to engage in gluconeogenesis nor should procyclic forms be able to return any of the glyceraldehyde 3-phosphate produced in the pentose phosphate pathway to glucose 6-phosphate. This last specific metabolic arrangement and the restriction of all but the terminal steps of glycolysis to the glycosome may be the observations required to explain the presence of distinct cytosolic and glycosomal isoenzymes of glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase. These same observations also may provide the basis for explaining the presence of cytosolic hexokinase and phosphoglucose isomerase without the presence of any cytosolic phosphofructokinase activity. The key enzymes of the Entner-Doudoroff pathway, 6-phosphogluconate dehydratase (EC 4.2.1.12) and 2-keto-3-deoxy-6-phosphogluconate aldolase (EC 4.1.2.14) were not detected in either procyclic or bloodstream forms of T. brucei.
已测定了布氏锥虫培养的前循环型和血流型中经典戊糖磷酸途径各酶的比活性。两种类型都含有葡萄糖-6-磷酸脱氢酶(EC 1.1.1.49)、6-磷酸葡萄糖酸内酯酶(EC 3.1.1.31)、6-磷酸葡萄糖酸脱氢酶(EC 1.1.1.44)、核糖-5-磷酸异构酶(EC 5.3.1.6)和转醛醇酶(EC 2.2.1.2)。然而,核糖ulose-5-磷酸3'-表异构酶(EC 5.1.3.1)和转酮醇酶(EC 2.2.1.1)的活性仅在前循环型中可检测到。这些结果清楚地表明,布氏锥虫的两种类型都可以通过经典戊糖磷酸途径的氧化部分代谢葡萄糖,以产生用于核酸合成的D-核糖-5-磷酸和用于其他合成反应的还原型NADP。然而,只有前循环型能够利用经典戊糖磷酸途径的非氧化部分在戊糖磷酸和己糖磷酸之间循环碳,以产生D-甘油醛3-磷酸作为该途径的净产物。两种类型都缺乏关键的糖异生酶果糖双磷酸酶(EC 3.1.3.11)。因此,两种类型都不应能够进行糖异生,前循环型也不应能够将戊糖磷酸途径中产生的任何甘油醛3-磷酸转化回葡萄糖6-磷酸。这种最后的特定代谢安排以及除糖酵解的末端步骤外所有步骤都局限于糖小体,可能是解释甘油醛-3-磷酸脱氢酶和磷酸甘油酸激酶存在不同的胞质和糖小体同工酶所需的观察结果。这些相同的观察结果也可能为解释存在胞质己糖激酶和磷酸葡萄糖异构酶而不存在任何胞质磷酸果糖激酶活性提供基础。在布氏锥虫的前循环型或血流型中均未检测到Entner-Doudoroff途径的关键酶6-磷酸葡萄糖酸脱水酶(EC 4.2.1.12)和2-酮-3-脱氧-6-磷酸葡萄糖酸醛缩酶(EC 4.1.2.14)。