Suppr超能文献

双丝氨酸氟喹诺酮耐药突变推动多种耐多药细菌的主要国际克隆和谱系发展。

Double-Serine Fluoroquinolone Resistance Mutations Advance Major International Clones and Lineages of Various Multi-Drug Resistant Bacteria.

作者信息

Fuzi Miklos, Szabo Dora, Csercsik Rita

机构信息

Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary.

出版信息

Front Microbiol. 2017 Nov 16;8:2261. doi: 10.3389/fmicb.2017.02261. eCollection 2017.

Abstract

The major international sequence types/lineages of methicillin-resistant (MRSA), extended-spectrum β-lactamase (ESBL)-producing and ESBL-producing were demonstrated to have been advanced by favorable fitness balance associated with high-level resistance to fluoroquinolones. The paper shows that favorable fitness in the major STs/lineages of these pathogens was principally attained by the capacity of evolving mutations in the fluoroquinolone-binding serine residues of both the DNA gyrase and topoisomerase IV enzymes. The available information on fitness balance incurred by individual and various combinations of mutations in the enzymes is reviewed in multiple species. Moreover, strong circumstantial evidence is presented that major STs/lineages of other multi-drug resistant bacteria, primarily vancomycin-resistant (VRE), emerged by a similar mechanism. The reason(s) why the major ST/lineage strains of various pathogens proved more adept at evolving favorable mutations than most isolates of the same species remains to be elucidated.

摘要

耐甲氧西林金黄色葡萄球菌(MRSA)、产超广谱β-内酰胺酶(ESBL)菌株以及产ESBL菌株的主要国际序列类型/谱系,已被证明是通过与对氟喹诺酮类药物的高水平耐药性相关的有利适应性平衡而得以发展。该论文表明,这些病原体主要序列类型/谱系中的有利适应性,主要是通过在DNA促旋酶和拓扑异构酶IV酶的氟喹诺酮结合丝氨酸残基中发生进化突变的能力而实现的。关于多种物种中酶的单个和各种突变组合所导致的适应性平衡的现有信息进行了综述。此外,有力的间接证据表明,其他多重耐药细菌的主要序列类型/谱系,主要是耐万古霉素肠球菌(VRE),也是通过类似机制出现的。各种病原体的主要序列类型/谱系菌株为何比同一物种的大多数分离株更善于进化出有利突变的原因仍有待阐明。

相似文献

2
Global Evolution of Pathogenic Bacteria With Extensive Use of Fluoroquinolone Agents.
Front Microbiol. 2020 Feb 25;11:271. doi: 10.3389/fmicb.2020.00271. eCollection 2020.
6
Contribution of Type II Topoisomerase Mutations to Fluoroquinolone Resistance in Enterococcus faecium from Japanese Clinical Setting.
Microb Drug Resist. 2018 Jan/Feb;24(1):1-7. doi: 10.1089/mdr.2016.0328. Epub 2017 May 15.
7
Colonization of skilled-care facility residents with antimicrobial-resistant pathogens.
J Am Geriatr Soc. 2001 Mar;49(3):270-6. doi: 10.1046/j.1532-5415.2001.4930270.x.
9
Sequence Type 131 30 Is the Main Driver of Emerging Extended-Spectrum-β-Lactamase-Producing . at a Tertiary Care Center.
mSphere. 2016 Nov 23;1(6). doi: 10.1128/mSphere.00314-16. eCollection 2016 Nov-Dec.
10
Patterns of Drug-Resistant Bacteria in a General Hospital, China, 2011-2016.
Pol J Microbiol. 2019;68(2):225-232. doi: 10.33073/pjm-2019-024.

引用本文的文献

1
Methicillin-resistant in Saudi Arabia: genomic evidence of recent clonal expansion and plasmid-driven resistance dissemination.
Front Microbiol. 2025 Jun 13;16:1602985. doi: 10.3389/fmicb.2025.1602985. eCollection 2025.
2
Variable Efficacy of Delafloxacin on Multidrug-Resistant and the Detection of Delafloxacin Resistance Determinants.
Antibiotics (Basel). 2025 May 25;14(6):542. doi: 10.3390/antibiotics14060542.
3
The fitness connection of antibiotic resistance.
Front Microbiol. 2025 Apr 10;16:1556656. doi: 10.3389/fmicb.2025.1556656. eCollection 2025.
4
Detection of Delafloxacin Resistance Mechanisms in Multidrug-Resistant .
Antibiotics (Basel). 2025 Jan 9;14(1):62. doi: 10.3390/antibiotics14010062.
5
Integrative genomics would strengthen AMR understanding through ONE health approach.
Heliyon. 2024 Jul 17;10(14):e34719. doi: 10.1016/j.heliyon.2024.e34719. eCollection 2024 Jul 30.
6
Analysis of molecular mechanisms of delafloxacin resistance in Escherichia coli.
Sci Rep. 2024 Nov 2;14(1):26423. doi: 10.1038/s41598-024-78124-9.
8
A review of the mechanisms that confer antibiotic resistance in pathotypes of .
Front Cell Infect Microbiol. 2024 Apr 4;14:1387497. doi: 10.3389/fcimb.2024.1387497. eCollection 2024.
9
Genetic Determinants in MRSA Carriage and Their Association with Decolonization Outcome.
Curr Microbiol. 2024 Jan 13;81(2):63. doi: 10.1007/s00284-023-03581-w.

本文引用的文献

1
Genomic and phenotypic characterisation of fluoroquinolone resistance mechanisms in Enterobacteriaceae in Durban, South Africa.
PLoS One. 2017 Jun 21;12(6):e0178888. doi: 10.1371/journal.pone.0178888. eCollection 2017.
2
Fluoroquinolone resistance in Streptococcus pneumoniae isolates in Germany from 2004-2005 to 2014-2015.
Int J Med Microbiol. 2017 Jun;307(4-5):216-222. doi: 10.1016/j.ijmm.2017.04.003. Epub 2017 Apr 19.
3
ST131: a multidrug-resistant clone primed for global domination.
F1000Res. 2017 Feb 28;6. doi: 10.12688/f1000research.10609.1. eCollection 2017.
4
Ecological impact of ciprofloxacin on commensal enterococci in healthy volunteers.
J Antimicrob Chemother. 2017 Jun 1;72(6):1574-1580. doi: 10.1093/jac/dkx043.
6
Characteristics of Quinolone Resistance in Isolates from Humans, Animals, and the Environment in the Czech Republic.
Front Microbiol. 2017 Jan 9;7:2147. doi: 10.3389/fmicb.2016.02147. eCollection 2016.
7
Mutation Supply and Relative Fitness Shape the Genotypes of Ciprofloxacin-Resistant Escherichia coli.
Mol Biol Evol. 2017 May 1;34(5):1029-1039. doi: 10.1093/molbev/msx052.
10
Identification of a novel mutation at the primary dimer interface of GyrA conferring fluoroquinolone resistance in Clostridium difficile.
J Glob Antimicrob Resist. 2015 Dec;3(4):295-299. doi: 10.1016/j.jgar.2015.09.007. Epub 2015 Nov 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验