Suppr超能文献

基于离散小波变换的近似熵、香农熵和支持向量机的癫痫发作检测:案例研究

Epileptic seizure detection using DWT-based approximate entropy, Shannon entropy and support vector machine: a case study.

作者信息

Sharmila A, Aman Raj Suman, Shashank Pandey, Mahalakshmi P

机构信息

a School of Electrical Engineering , VIT University , Vellore , India.

出版信息

J Med Eng Technol. 2018 Jan;42(1):1-8. doi: 10.1080/03091902.2017.1394389. Epub 2017 Dec 18.

Abstract

In this work, we have used a time-frequency domain analysis method called discrete wavelet transform (DWT) technique. This method stand out compared to other proposed methods because of its algorithmic elegance and accuracy. A wavelet is a mathematical function based on time-frequency analysis in signal processing. It is useful particularly because it allows a weak signal to be recovered from a noisy signal without much distortion. A wavelet analysis works by analysing the image and converting it to mathematical function which is decoded by the receiver. Furthermore, we have used Shannon entropy and approximate entropy (ApEn) for extracting the complexities associated with electroencephalographic (EEG) signals. The ApEn is a suitable feature to characterise the EEGs because its value drops suddenly due to excessive synchronous discharge of neurons in the brain during epileptic activity in this study. EEG signals are decomposed into six EEG sub-bands namely D1-D5 and A5 using DWT technique. Non-linear features such as ApEn and Shannon entropy are calculated from these sub-bands and support vector machine classifiers are used for classification purpose. This scheme is tested using EEG data recorded from five healthy subjects and five epileptic patients during the inter-ictal and ictal periods. The data are acquired from University of Bonn, Germany. The proposed method is evaluated through 15 classification problems, and obtained high classification accuracy of 100% for two cases and it indicates the good classifying performance of the proposed method.

摘要

在这项工作中,我们使用了一种称为离散小波变换(DWT)技术的时频域分析方法。与其他提出的方法相比,该方法因其算法的简洁性和准确性而脱颖而出。小波是信号处理中基于时频分析的数学函数。它特别有用,因为它能使微弱信号从噪声信号中恢复出来而不会有太大失真。小波分析通过分析图像并将其转换为数学函数来工作,该数学函数由接收器解码。此外,我们使用香农熵和近似熵(ApEn)来提取与脑电图(EEG)信号相关的复杂性。在本研究中,ApEn是表征脑电图的一个合适特征,因为在癫痫活动期间,由于大脑中神经元的过度同步放电,其值会突然下降。使用DWT技术将EEG信号分解为六个EEG子带,即D1 - D5和A5。从这些子带中计算出ApEn和香农熵等非线性特征,并使用支持向量机分类器进行分类。使用从德国波恩大学记录的五名健康受试者和五名癫痫患者在发作间期和发作期的EEG数据对该方案进行了测试。数据是从德国波恩大学获取的。通过15个分类问题对所提出的方法进行了评估,在两种情况下获得了100%的高分类准确率,这表明了所提出方法良好的分类性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验