Suppr超能文献

基于发作间期颅内脑电图的离散小波变换癫痫病灶定位

Epileptic Focus Localization Using Discrete Wavelet Transform Based on Interictal Intracranial EEG.

作者信息

Chen Duo, Wan Suiren, Bao Forrest Sheng

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2017 May;25(5):413-425. doi: 10.1109/TNSRE.2016.2604393. Epub 2016 Aug 30.

Abstract

Over the past decade, with the development of machine learning, discrete wavelet transform (DWT) has been widely used in computer-aided epileptic electroencephalography (EEG) signal analysis as a powerful time-frequency tool. But some important problems have not yet been benefitted from DWT, including epileptic focus localization, a key task in epilepsy diagnosis and treatment. Additionally, the parameters and settings for DWT are chosen empirically or arbitrarily in previous work. In this work, we propose a framework to use DWT and support vector machine (SVM) for epileptic focus localization problem based on EEG. To provide a guideline in selecting the best settings for DWT, we decompose the EEG segments in seven commonly used wavelet families to their maximum theoretical levels. The wavelet and its level of decomposition providing the highest accuracy in each wavelet family are then used in a grid search for obtaining the optimal frequency bands and wavelet coefficient features. Our approach achieves promising performance on two widely-recognized intrancranial EEG datasets that are also seizure-free, with an accuracy of 83.07% on the Bern-Barcelona dataset and an accuracy of 88.00% on the UBonn dataset. Compared with existing DWT-based approaches in epileptic EEG analysis, the proposed approach leads to more accurate and robust results. A guideline for DWT parameter setting is provided at the end of the paper.

摘要

在过去十年中,随着机器学习的发展,离散小波变换(DWT)作为一种强大的时频工具,已被广泛应用于计算机辅助癫痫脑电图(EEG)信号分析。但一些重要问题尚未从DWT中受益,包括癫痫病灶定位,这是癫痫诊断和治疗中的一项关键任务。此外,在以往的工作中,DWT的参数和设置是凭经验或随意选择的。在这项工作中,我们提出了一个基于EEG使用DWT和支持向量机(SVM)来解决癫痫病灶定位问题的框架。为了提供选择DWT最佳设置的指导方针,我们将EEG片段在七个常用小波族中分解到其最大理论水平。然后,在网格搜索中使用在每个小波族中提供最高准确率的小波及其分解水平,以获得最佳频带和小波系数特征。我们的方法在两个广泛认可的无癫痫发作的颅内EEG数据集上取得了有前景的性能,在伯尔尼 - 巴塞罗那数据集上的准确率为83.07%,在波恩大学数据集上的准确率为88.00%。与现有的基于DWT的癫痫EEG分析方法相比,所提出的方法产生了更准确和稳健的结果。本文末尾提供了DWT参数设置的指导方针。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验