Stefanou Konstantinos, Tzimourta Katerina D, Bellos Christos, Stergios Georgios, Markoglou Konstantinos, Gionanidis Emmanouil, Tsipouras Markos G, Giannakeas Nikolaos, Tzallas Alexandros T, Miltiadous Andreas
Department of Informatics and Telecommunications, University of Ioannina, Kostakioi, 47100 Arta, Greece.
Department of Electrical and Computer Engineering, Faculty of Engineering, University of Western Macedonia, 50100 Kozani, Greece.
J Pers Med. 2025 Jan 14;15(1):27. doi: 10.3390/jpm15010027.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that poses critical challenges in global healthcare due to its increasing prevalence and severity. Diagnosing AD and other dementias, such as frontotemporal dementia (FTD), is slow and resource-intensive, underscoring the need for automated approaches. To address this gap, this study proposes a novel deep learning methodology for EEG classification of AD, FTD, and control (CN) signals. The approach incorporates advanced preprocessing techniques and CNN classification of FFT-based spectrograms and is evaluated using the leave-N-subjects-out validation, ensuring robust cross-subject generalizability. The results indicate that the proposed methodology outperforms state-of-the-art machine learning and EEG-specific neural network models, achieving an accuracy of 79.45% for AD/CN classification and 80.69% for AD+FTD/CN classification. These results highlight the potential of EEG-based deep learning models for early dementia screening, enabling more efficient, scalable, and accessible diagnostic tools.
阿尔茨海默病(AD)是一种进行性神经退行性疾病,由于其患病率和严重程度不断增加,给全球医疗保健带来了严峻挑战。诊断AD和其他痴呆症,如额颞叶痴呆(FTD),过程缓慢且资源密集,这凸显了自动化方法的必要性。为了弥补这一差距,本研究提出了一种用于AD、FTD和对照(CN)信号脑电图分类的新型深度学习方法。该方法结合了先进的预处理技术以及基于快速傅里叶变换(FFT)的频谱图的卷积神经网络(CNN)分类,并使用留N个受试者法验证进行评估,确保了强大的跨受试者通用性。结果表明,所提出的方法优于当前最先进的机器学习和特定于脑电图的神经网络模型,AD/CN分类的准确率达到79.45%,AD+FTD/CN分类的准确率达到80.69%。这些结果突出了基于脑电图的深度学习模型在早期痴呆筛查方面的潜力,能够实现更高效、可扩展且易于使用的诊断工具。