Suppr超能文献

群体复制科学专家对表型系统发育矩阵评分的表现。

Crowds Replicate Performance of Scientific Experts Scoring Phylogenetic Matrices of Phenotypes.

作者信息

O'Leary Maureen A, Alphonse Kenzley, Mariangeles Arce H, Cavaliere Dario, Cirranello Andrea, Dietterich Thomas G, Julius Matthew, Kaufman Seth, Law Edith, Passarotti Maria, Reft Abigail, Robalino Javier, Simmons Nancy B, Smith Selena Y, Stevenson Dennis W, Theriot Ed, Velazco Paúl M, Walls Ramona L, Yu Mengjie, Daly Marymegan

机构信息

Department of Anatomical Sciences, HSC T-8 (040), Stony Brook University, Stony Brook, NY 11794-8081, USA.

Kenx Technology, Inc., 1170 N. Milwaukee Ave. Chicago, IL 60642, USA.

出版信息

Syst Biol. 2018 Jan 1;67(1):49-60. doi: 10.1093/sysbio/syx052.

Abstract

Scientists building the Tree of Life face an overwhelming challenge to categorize phenotypes (e.g., anatomy, physiology) from millions of living and fossil species. This biodiversity challenge far outstrips the capacities of trained scientific experts. Here we explore whether crowdsourcing can be used to collect matrix data on a large scale with the participation of nonexpert students, or "citizen scientists." Crowdsourcing, or data collection by nonexperts, frequently via the internet, has enabled scientists to tackle some large-scale data collection challenges too massive for individuals or scientific teams alone. The quality of work by nonexpert crowds is, however, often questioned and little data have been collected on how such crowds perform on complex tasks such as phylogenetic character coding. We studied a crowd of over 600 nonexperts and found that they could use images to identify anatomical similarity (hypotheses of homology) with an average accuracy of 82% compared with scores provided by experts in the field. This performance pattern held across the Tree of Life, from protists to vertebrates. We introduce a procedure that predicts the difficulty of each character and that can be used to assign harder characters to experts and easier characters to a nonexpert crowd for scoring. We test this procedure in a controlled experiment comparing crowd scores to those of experts and show that crowds can produce matrices with over 90% of cells scored correctly while reducing the number of cells to be scored by experts by 50%. Preparation time, including image collection and processing, for a crowdsourcing experiment is significant, and does not currently save time of scientific experts overall. However, if innovations in automation or robotics can reduce such effort, then large-scale implementation of our method could greatly increase the collective scientific knowledge of species phenotypes for phylogenetic tree building. For the field of crowdsourcing, we provide a rare study with ground truth, or an experimental control that many studies lack, and contribute new methods on how to coordinate the work of experts and nonexperts. We show that there are important instances in which crowd consensus is not a good proxy for correctness.

摘要

构建生命之树的科学家们面临着一项艰巨的挑战,即对数以百万计的现存物种和化石物种的表型(如解剖学、生理学)进行分类。这一生物多样性挑战远远超出了训练有素的科学专家的能力范围。在此,我们探讨是否可以利用众包的方式,让非专业学生(即“公民科学家”)参与其中,大规模收集矩阵数据。众包,即通常通过互联网由非专业人员进行数据收集,使科学家们能够应对一些规模巨大、仅凭个人或科研团队难以完成的大规模数据收集挑战。然而,非专业群体的工作质量常常受到质疑,而且对于这类群体在诸如系统发育特征编码等复杂任务中的表现,所收集的数据很少。我们对600多名非专业人员组成的群体进行了研究,发现他们能够利用图像识别解剖学上的相似性(同源性假设),平均准确率达82%,与该领域专家给出的分数相当。这种表现模式在从原生生物到脊椎动物的整个生命之树范围内都成立。我们引入了一种程序,该程序可以预测每个特征的难度,并可用于将较难的特征分配给专家,将较容易的特征分配给非专业群体进行评分。我们在一项对照实验中对该程序进行了测试,将群体评分与专家评分进行比较,结果表明,群体能够生成细胞评分正确率超过90%的矩阵,同时将专家需要评分的细胞数量减少50%。众包实验的准备时间,包括图像收集和处理,相当可观,目前总体上并没有节省科学专家的时间。然而,如果自动化或机器人技术方面的创新能够减少此类工作量,那么我们方法的大规模应用可能会极大地增加用于构建系统发育树的物种表型的集体科学知识。对于众包领域,我们提供了一项罕见的、有实地真相(或许多研究缺乏的实验对照)的研究,并贡献了关于如何协调专家和非专家工作的新方法。我们表明,在一些重要情况下,群体共识并非正确性的良好代表。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验