RAND Corporation, 1776 Main Street, Santa Monica, CA, 90407, USA.
Institute for Social Research, University of Michigan, 426 Thompson Street, Ann Arbor, MI, 48104-2321, USA.
Addict Sci Clin Pract. 2017 Dec 19;12(1):35. doi: 10.1186/s13722-017-0099-4.
Over 1.6 million adolescents in the United States meet criteria for substance use disorders (SUDs). While there are promising treatments for SUDs, adolescents respond to these treatments differentially in part based on the setting in which treatments are delivered. One way to address such individualized response to treatment is through the development of adaptive interventions (AIs): sequences of decision rules for altering treatment based on an individual's needs. This protocol describes a project with the overarching goal of beginning the development of AIs that provide recommendations for altering the setting of an adolescent's substance use treatment. This project has three discrete aims: (1) explore the views of various stakeholders (parents, providers, policymakers, and researchers) on deciding the setting of substance use treatment for an adolescent based on individualized need, (2) generate hypotheses concerning candidate AIs, and (3) compare the relative effectiveness among candidate AIs and non-adaptive interventions commonly used in everyday practice.
This project uses a mixed-methods approach. First, we will conduct an iterative stakeholder engagement process, using RAND's ExpertLens online system, to assess the importance of considering specific individual needs and clinical outcomes when deciding the setting for an adolescent's substance use treatment. Second, we will use results from the stakeholder engagement process to analyze an observational longitudinal data set of 15,656 adolescents in substance use treatment, supported by the Substance Abuse and Mental Health Services Administration, using the Global Appraisal of Individual Needs questionnaire. We will utilize methods based on Q-learning regression to generate hypotheses about candidate AIs. Third, we will use robust statistical methods that aim to appropriately handle casemix adjustment on a large number of covariates (marginal structural modeling and inverse probability of treatment weights) to compare the relative effectiveness among candidate AIs and non-adaptive decision rules that are commonly used in everyday practice.
This project begins filling a major gap in clinical and research efforts for adolescents in substance use treatment. Findings could be used to inform the further development and revision of influential multi-dimensional assessment and treatment planning tools, or lay the foundation for subsequent experiments to further develop or test AIs for treatment planning.
美国有超过 160 万青少年符合物质使用障碍(SUD)的标准。虽然有一些针对 SUD 的有希望的治疗方法,但青少年对这些治疗方法的反应存在差异,部分原因是治疗的实施环境不同。解决这种针对治疗的个体化反应的一种方法是通过开发适应性干预措施(AIs):根据个人的需求改变治疗的决策规则序列。本方案描述了一个项目,其总体目标是开始开发为改变青少年物质使用治疗的环境提供建议的 AIs。该项目有三个明确的目标:(1)探讨各种利益相关者(父母、提供者、政策制定者和研究人员)对根据个体需求决定青少年物质使用治疗环境的看法,(2)生成关于候选 AIs 的假设,(3)比较候选 AIs 与日常实践中常用的非适应性干预措施之间的相对效果。
本项目采用混合方法。首先,我们将使用 RAND 的 ExpertLens 在线系统进行迭代式利益相关者参与过程,以评估在决定青少年物质使用治疗环境时考虑特定个体需求和临床结果的重要性。其次,我们将使用利益相关者参与过程的结果来分析由物质滥用和心理健康服务管理局支持的 15656 名接受物质使用治疗的青少年的观察性纵向数据集,使用全球个体需求评估问卷。我们将使用基于 Q 学习回归的方法生成关于候选 AIs 的假设。第三,我们将使用稳健的统计方法,旨在适当处理大量协变量的 casemix 调整(边际结构建模和治疗权重的逆概率),以比较候选 AIs 与日常实践中常用的非适应性决策规则之间的相对效果。
本项目开始填补青少年物质使用治疗临床和研究努力中的一个主要空白。研究结果可用于为进一步开发和修订有影响力的多维评估和治疗计划工具提供信息,或为随后的实验奠定基础,以进一步开发或测试用于治疗计划的 AIs。