Institute for Social Research, University of Michigan, Ann Arbor, MI 48106, USA.
Psychol Methods. 2012 Dec;17(4):478-94. doi: 10.1037/a0029373. Epub 2012 Oct 1.
Increasing interest in individualizing and adapting intervention services over time has led to the development of adaptive interventions. Adaptive interventions operationalize the individualization of a sequence of intervention options over time via the use of decision rules that input participant information and output intervention recommendations. We introduce Q-learning, which is a generalization of regression analysis to settings in which a sequence of decisions regarding intervention options or services is made. The use of Q is to indicate that this method is used to assess the relative quality of the intervention options. In particular, we use Q-learning with linear regression to estimate the optimal (i.e., most effective) sequence of decision rules. We illustrate how Q-learning can be used with data from sequential multiple assignment randomized trials (SMARTs; Murphy, 2005) to inform the construction of a more deeply tailored sequence of decision rules than those embedded in the SMART design. We also discuss the advantages of Q-learning compared to other data analysis approaches. Finally, we use the Adaptive Interventions for Children With ADHD SMART study (Center for Children and Families, University at Buffalo, State University of New York, William E. Pelham as principal investigator) for illustration.
随着人们对干预服务个性化和适应性的兴趣日益增加,适应性干预措施应运而生。适应性干预措施通过使用决策规则来实现干预选项的个性化和适应性,这些决策规则输入参与者信息并输出干预建议。我们引入了 Q 学习,它是回归分析在涉及干预选项或服务的一系列决策中的推广。使用 Q 表示该方法用于评估干预选项的相对质量。具体来说,我们使用 Q 学习和线性回归来估计最优(即最有效)的决策规则序列。我们展示了如何使用来自序贯多项随机试验(SMARTs;Murphy,2005)的数据来使用 Q 学习来通知构建比 SMART 设计中嵌入的决策规则更深入定制的决策规则序列。我们还讨论了 Q 学习与其他数据分析方法相比的优势。最后,我们使用注意力缺陷多动障碍儿童适应性干预措施 SMART 研究(纽约州立大学布法罗分校儿童与家庭中心,William E. Pelham 为首席研究员)进行说明。