Suppr超能文献

结合出现率和丰度分布模型以保护大鸨。

Combining occurrence and abundance distribution models for the conservation of the Great Bustard.

作者信息

Mi Chunrong, Huettmann Falk, Sun Rui, Guo Yumin

机构信息

College of Nature Conservation, Beijing Forestry University, Beijing, China.

EWHALE Lab, Department of Biology and Wildlife, Institute of Arctic Biology, University of Alaska-Fairbanks, Fairbanks, AK, United States of America.

出版信息

PeerJ. 2017 Dec 13;5:e4160. doi: 10.7717/peerj.4160. eCollection 2017.

Abstract

Species distribution models (SDMs) have become important and essential tools in conservation and management. However, SDMs built with count data, referred to as species abundance models (SAMs), are still less commonly used to date, but increasingly receiving attention. Species occurrence and abundance do not frequently display similar patterns, and often they are not even well correlated. Therefore, only using information based on SDMs or SAMs leads to an insufficient or misleading conservation efforts. How to combine information from SDMs and SAMs and how to apply the combined information to achieve unified conservation remains a challenge. In this study, we introduce and propose a priority protection index (PI). The PI combines the prediction results of the occurrence and abundance models. As a case study, we used the best-available presence and count records for an endangered farmland species, the Great Bustard (), in Bohai Bay, China. We then applied the Random Forest algorithm (Salford Systems Ltd. Implementation) with eleven predictor variables to forecast the spatial occurrence as well as the abundance distribution. The results show that the occurrence model had a decent performance (ROC: 0.77) and the abundance model had a RMSE of 26.54. It is noteworthy that environmental variables influenced bustard occurrence and abundance differently. The area of farmland, and the distance to residential areas were the top important variables influencing bustard occurrence. While the distance to national roads and to expressways were the most important influencing abundance. In addition, the occurrence and abundance models displayed different spatial distribution patterns. The regions with a high index of occurrence were concentrated in the south-central part of the study area; and the abundance distribution showed high populations occurrence in the central and northwestern parts of the study area. However, combining occurrence and abundance indices to produce a priority protection index (PI) to be used for conservation could guide the protection of the areas with high occurrence and high abundance (e.g., in Strategic Conservation Planning). Due to the widespread use of SDMs and the easy subsequent employment of SAMs, these findings have a wide relevance and applicability than just those only based on SDMs or SAMs. We promote and strongly encourage researchers to further test, apply and update the priority protection index (PI) elsewhere to explore the generality of these findings and methods that are now readily available.

摘要

物种分布模型(SDMs)已成为保护和管理领域重要且必不可少的工具。然而,基于计数数据构建的物种分布模型,即物种丰度模型(SAMs),迄今仍较少被使用,但正越来越受到关注。物种的出现和丰度并不经常呈现相似的模式,而且它们之间往往甚至没有很好的相关性。因此,仅使用基于物种分布模型或物种丰度模型的信息会导致保护工作不足或产生误导。如何将物种分布模型和物种丰度模型的信息结合起来,以及如何应用这些综合信息来实现统一的保护,仍然是一个挑战。在本研究中,我们引入并提出了一个优先保护指数(PI)。该指数结合了出现模型和丰度模型的预测结果。作为一个案例研究,我们使用了中国渤海湾一种濒危农田物种大鸨()的最佳现有存在和计数记录。然后,我们应用随机森林算法(Salford Systems Ltd. 实现)和11个预测变量来预测空间出现情况以及丰度分布。结果表明,出现模型表现良好(ROC:0.77),丰度模型的均方根误差为26.54。值得注意的是,环境变量对大鸨出现和丰度的影响不同。农田面积和到居民区的距离是影响大鸨出现的最重要变量。而到国道和高速公路的距离是影响丰度的最重要因素。此外,出现模型和丰度模型呈现出不同的空间分布模式。出现指数高的区域集中在研究区域的中南部;丰度分布显示研究区域中部和西北部有高种群出现。然而,将出现指数和丰度指数结合起来生成一个用于保护的优先保护指数(PI),可以指导对出现率高和丰度高的区域进行保护(例如在战略保护规划中)。由于物种分布模型的广泛使用以及随后物种丰度模型的易于应用,这些发现具有比仅基于物种分布模型或物种丰度模型更广泛的相关性和适用性。我们提倡并强烈鼓励研究人员在其他地方进一步测试、应用和更新优先保护指数(PI),以探索这些发现和方法的普遍性,而这些现在已经很容易获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验