Suppr超能文献

一种用于阿拉斯加乌林鸮“大数据”应用的、在云端的超级物种分布模型(SDM),以实现更好的栖息地关联推断。

A super SDM (species distribution model) 'in the cloud' for better habitat-association inference with a 'big data' application of the Great Gray Owl for Alaska.

作者信息

Huettmann Falk, Andrews Phillip, Steiner Moriz, Das Arghya Kusum, Philip Jacques, Mi Chunrong, Bryans Nathaniel, Barker Bryan

机构信息

-EWHALE Lab-, Biology and Wildlife Department, Institute of Arctic Biology, University of Alaska, Fairbanks, AK, 99775, USA.

Department of Computer Science and Engineering, University of Alaska, Fairbanks, AK, 99775, USA.

出版信息

Sci Rep. 2024 Mar 27;14(1):7213. doi: 10.1038/s41598-024-57588-9.

Abstract

The currently available distribution and range maps for the Great Grey Owl (GGOW; Strix nebulosa) are ambiguous, contradictory, imprecise, outdated, often hand-drawn and thus not quantified, not based on data or scientific. In this study, we present a proof of concept with a biological application for technical and biological workflow progress on latest global open access 'Big Data' sharing, Open-source methods of R and geographic information systems (OGIS and QGIS) assessed with six recent multi-evidence citizen-science sightings of the GGOW. This proposed workflow can be applied for quantified inference for any species-habitat model such as typically applied with species distribution models (SDMs). Using Random Forest-an ensemble-type model of Machine Learning following Leo Breiman's approach of inference from predictions-we present a Super SDM for GGOWs in Alaska running on Oracle Cloud Infrastructure (OCI). These Super SDMs were based on best publicly available data (410 occurrences + 1% new assessment sightings) and over 100 environmental GIS habitat predictors ('Big Data'). The compiled global open access data and the associated workflow overcome for the first time the limitations of traditionally used PC and laptops. It breaks new ground and has real-world implications for conservation and land management for GGOW, for Alaska, and for other species worldwide as a 'new' baseline. As this research field remains dynamic, Super SDMs can have limits, are not the ultimate and final statement on species-habitat associations yet, but they summarize all publicly available data and information on a topic in a quantified and testable fashion allowing fine-tuning and improvements as needed. At minimum, they allow for low-cost rapid assessment and a great leap forward to be more ecological and inclusive of all information at-hand. Using GGOWs, here we aim to correct the perception of this species towards a more inclusive, holistic, and scientifically correct assessment of this urban-adapted owl in the Anthropocene, rather than a mysterious wilderness-inhabiting species (aka 'Phantom of the North'). Such a Super SDM was never created for any bird species before and opens new perspectives for impact assessment policy and global sustainability.

摘要

目前可获取的乌林鸮(GGOW;Strix nebulosa)分布和范围地图含混不清、相互矛盾、不够精确、过时,且往往是手绘的,因此未量化,并非基于数据或科学依据。在本研究中,我们展示了一个概念验证,其具有生物学应用,涉及最新全球开放获取的“大数据”共享中的技术和生物学工作流程进展,以及用最近六次乌林鸮多证据公民科学目击数据评估的R语言开源方法和地理信息系统(OGIS和QGIS)。这种提议的工作流程可应用于对任何物种 - 栖息地模型进行量化推断,比如通常用于物种分布模型(SDMs)的模型。使用随机森林——一种遵循利奥·布雷曼预测推断方法的机器学习集成类型模型——我们在甲骨文云基础设施(OCI)上为阿拉斯加的乌林鸮呈现了一个超级物种分布模型(Super SDM)。这些超级物种分布模型基于可公开获取的最佳数据(410个出现点 + 1%新评估目击数据)以及100多个环境地理信息系统栖息地预测因子(“大数据”)。汇编的全球开放获取数据及相关工作流程首次克服了传统使用的个人电脑和笔记本电脑的局限性。它开辟了新领域,对阿拉斯加以及全球其他地区的乌林鸮的保护和土地管理具有现实意义,成为一个“新”基线。由于这个研究领域仍在动态发展,超级物种分布模型可能存在局限性,并非关于物种 - 栖息地关联的最终定论,但它们以量化且可测试的方式总结了关于一个主题的所有可公开获取的数据和信息,允许根据需要进行微调与改进。至少,它们允许进行低成本快速评估,并朝着更具生态性和纳入所有现有信息迈出了一大步。以乌林鸮为例,我们旨在纠正对该物种的认知,以对这种适应城市的鸮类在人类世进行更具包容性、整体性和科学正确性的评估,而非将其视为一种神秘的栖息于荒野的物种(即“北方幽灵”)。此前从未为任何鸟类物种创建过这样的超级物种分布模型,它为影响评估政策和全球可持续性开辟了新视角。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验