Department of Pathology, Route 0419, University of Texas Medical Branch, Galveston, TX, 77555-0419, USA.
Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
J Neurovirol. 2018 Apr;24(2):146-155. doi: 10.1007/s13365-017-0601-5. Epub 2017 Dec 18.
HIV-infected patients treated with antiretroviral medicines (ART) still face neurological challenges. HIV-associated neurocognitive disturbances (HAND) can occur, and latent viral DNA persisting in the central nervous system (CNS) prevents eradication of HIV. This communication focuses on how to develop experimental models of HAND and CNS HIV latency that best imitate the CNS pathophysiology in diseased humans, which we take to be "the real thing." Models of HIV encephalitis (HIVE) with active CNS viral replication were developed in the early years of the AIDS pandemic. The clinical relevancy of such models is in sharp decline because HIVE seldom occurs in virally suppressed patients, while HAND remains common. The search for improved models of HAND should incorporate the neurochemical, neuroimmunological and neuropathological features of virally suppressed patients. Common anomalies in these patients as established in autopsy brain specimens include brain endothelial cell activation and neurochemical imbalances of synaptic transmission; classical neurodegeneration may not be as crucial. With regard to latent HIV with viral suppression, human brain specimens show that the pool of latent proviral HIV DNA in the CNS is relatively small relative to the total body pool and does not change substantially over years. The CNS pool of latent virus probably differs from lymphoid tissues, because the mononuclear phagocyte system sustains productive infection (versus lymphocytes). These and yet-to-be discovered aspects of the human CNS of virally suppressed patients need to be better defined and addressed in experimental models. To maintain clinical relevancy, models of HAND and viral latency should faithfully emulate "the real thing."
接受抗逆转录病毒药物(ART)治疗的 HIV 感染患者仍然面临神经学挑战。可能会发生与 HIV 相关的认知障碍(HAND),并且潜伏在中枢神经系统(CNS)中的病毒 DNA 会阻止 HIV 的根除。本通讯重点介绍如何开发最能模拟患病人类中枢神经系统病理生理学的 HAND 和 CNS HIV 潜伏期的实验模型,我们将其视为“真实情况”。在艾滋病大流行的早期,就已经开发出了具有活跃中枢神经系统病毒复制的 HIV 脑炎(HIVE)模型。由于 HIVE 在病毒抑制的患者中很少发生,而 HAND 仍然很常见,因此此类模型的临床相关性急剧下降。寻找 HAND 的改进模型应结合病毒抑制患者的神经化学、神经免疫和神经病理学特征。在尸检脑组织标本中确定的这些患者的常见异常包括脑内皮细胞激活和突触传递的神经化学失衡;经典的神经退行性变可能不那么重要。关于具有病毒抑制的潜伏 HIV,人类脑组织标本表明,中枢神经系统中潜伏的前病毒 HIV DNA 池相对于全身池相对较小,并且多年来没有实质性变化。中枢神经系统中的潜伏病毒池可能与淋巴组织不同,因为单核吞噬细胞系统维持着有活力的感染(而不是淋巴细胞)。这些和尚未发现的受病毒抑制的患者中枢神经系统的方面需要在实验模型中得到更好的定义和解决。为了保持临床相关性,HAND 和病毒潜伏期模型应忠实地模拟“真实情况”。
J Neurovirol. 2017-12-18
J Neurovirol. 2017-10-3
J Neurovirol. 2017-7-27
J Neurovirol. 2017-8-22
HIV Clin Trials. 2006
Cells. 2024-6-29
Drug Discov Today Dis Models. 2020
Cell Death Differ. 2019-1-25
Nat Med. 2017-5-5
J Acquir Immune Defic Syndr. 2017-6-1
Cell Rep. 2017-2-7
J Acquir Immune Defic Syndr. 2017-4-15
Eur J Nucl Med Mol Imaging. 2017-5