Suppr超能文献

一种用于检测和区分感染扁虱和太平洋扁虱(蜱螨目:蜱科)的人类病原体的分子算法。

A molecular algorithm to detect and differentiate human pathogens infecting Ixodes scapularis and Ixodes pacificus (Acari: Ixodidae).

机构信息

Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, 3156 Rampart Rd., Fort Collins, CO 80521, United States.

Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, 3156 Rampart Rd., Fort Collins, CO 80521, United States.

出版信息

Ticks Tick Borne Dis. 2018 Feb;9(2):390-403. doi: 10.1016/j.ttbdis.2017.12.005. Epub 2017 Dec 10.

Abstract

The incidence and geographic range of tick-borne illness associated with Ixodes scapularis and Ixodes pacificus have dramatically increased in recent decades. Anaplasmosis, babesiosis, and Borrelia spirochete infections, including Lyme borreliosis, account for tens of thousands of reported cases of tick-borne disease every year. Assays that reliably detect pathogens in ticks allow investigators and public health agencies to estimate the geographic distribution of human pathogens, assess geographic variation in their prevalence, and evaluate the effectiveness of prevention strategies. As investigators continue to describe new species within the Borrelia burgdorferi sensu lato complex and to recognize some Ixodes-borne Borrelia species as human pathogens, assays are needed to detect and differentiate these species. Here we describe an algorithm to detect and differentiate pathogens in unfed I. scapularis and I. pacificus nymphs including Anaplasma phagocytophilum, Babesia microti, Borrelia burgdorferi sensu stricto, Borrelia mayonii, and Borrelia miyamotoi. The algorithm comprises 5 TaqMan real-time polymerase chain reaction assays and 3 sequencing protocols. It employs multiple targets for each pathogen to optimize specificity, a gene target for I. scapularis and I. pacificus to verify tick-derived DNA quality, and a pan-Borrelia target to detect Borrelia species that may emerge as human disease agents in the future. We assess the algorithm's sensitivity, specificity, and performance on field-collected ticks.

摘要

近年来,与肩突硬蜱和太平洋硬蜱相关的蜱传疾病的发病率和地理范围显著增加。无形体病、巴贝斯虫病和伯氏疏螺旋体感染,包括莱姆病,每年报告的蜱传疾病病例数以万计。能够可靠地检测蜱中的病原体的检测方法可让研究人员和公共卫生机构估计人类病原体的地理分布,评估其流行率的地理差异,并评估预防策略的有效性。随着研究人员继续描述伯氏疏螺旋体复合体中的新物种,并认识到一些蜱传伯氏疏螺旋体物种是人类病原体,因此需要检测和区分这些物种的检测方法。在这里,我们描述了一种用于检测和区分未进食的肩突硬蜱和太平洋硬蜱幼蜱中的病原体的算法,包括嗜吞噬细胞无形体、微小巴贝斯虫、伯氏疏螺旋体、马奥尼氏疏螺旋体和米雅罗疏螺旋体。该算法包括 5 个 TaqMan 实时聚合酶链反应检测和 3 个测序方案。它为每个病原体采用了多个靶标,以优化特异性,使用一个针对肩突硬蜱和太平洋硬蜱的基因靶标来验证源自蜱的 DNA 质量,以及一个泛伯氏疏螺旋体靶标来检测未来可能成为人类疾病因子的伯氏疏螺旋体物种。我们评估了该算法在现场采集的蜱中的灵敏度、特异性和性能。

相似文献

引用本文的文献

本文引用的文献

2
Surveillance for Lyme Disease - United States, 2008-2015.2008 - 2015年美国莱姆病监测
MMWR Surveill Summ. 2017 Nov 10;66(22):1-12. doi: 10.15585/mmwr.ss6622a1.
8

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验