Suppr超能文献

厚壁菌科的复杂抗药基因库反映了不同的抗生素化学生态。

The complex resistomes of Paenibacillaceae reflect diverse antibiotic chemical ecologies.

机构信息

Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.

出版信息

ISME J. 2018 Mar;12(3):885-897. doi: 10.1038/s41396-017-0017-5. Epub 2017 Dec 19.

Abstract

The ecology of antibiotic resistance involves the interplay of a long natural history of antibiotic production in the environment, and the modern selection of resistance in pathogens through human use of these drugs. Important components of the resistome are intrinsic resistance genes of environmental bacteria, evolved and acquired over millennia, and their mobilization, which drives dissemination in pathogens. Understanding the dynamics and evolution of resistance across bacterial taxa is essential to address the current crisis in drug-resistant infections. Here we report the exploration of antibiotic resistance in the Paenibacillaceae prompted by our discovery of an ancient intrinsic resistome in Paenibacillus sp. LC231, recovered from the isolated Lechuguilla cave environment. Using biochemical and gene expression analysis, we have mined the resistome of the second member of the Paenibacillaceae family, Brevibacillus brevis VM4, which produces several antimicrobial secondary metabolites. Using phylogenomics, we show that Paenibacillaceae resistomes are in flux, evolve mostly independent of secondary metabolite biosynthetic diversity, and are characterized by cryptic, redundant, pseudoparalogous, and orthologous genes. We find that in contrast to pathogens, mobile genetic elements are not significantly responsible for resistome remodeling. This offers divergent modes of resistome development in pathogens and environmental bacteria.

摘要

抗生素耐药性的生态学涉及抗生素在环境中的长期自然历史的相互作用,以及人类使用这些药物对病原体耐药性的现代选择。耐药组的重要组成部分是环境细菌的固有耐药基因,这些基因经过数千年的进化和获得,并通过其移动性驱动了病原体中的传播。了解细菌分类群中耐药性的动态和进化对于解决当前的耐药性感染危机至关重要。在这里,我们报告了由于我们在从孤立的 Lechuguilla 洞穴环境中回收的 Paenibacillus sp. LC231 中发现了古老的内在耐药组,从而对 Paenibacillaceae 中的抗生素耐药性进行了探索。通过生化和基因表达分析,我们挖掘了生产几种抗菌次生代谢物的 Brevibacillus brevis VM4 中 Paenibacillaceae 耐药组的信息。通过系统发生基因组学,我们表明 Paenibacillaceae 耐药组处于不断变化中,主要独立于次生代谢物生物合成多样性进化,其特征是隐藏的、冗余的、假同源的和直系同源的基因。我们发现,与病原体不同,移动遗传元件并不是耐药组重构的主要原因。这为病原体和环境细菌中的耐药组发展提供了不同的模式。

相似文献

3
The Prehistory of Antibiotic Resistance.抗生素耐药性的史前史
Cold Spring Harb Perspect Med. 2016 Jun 1;6(6):a025197. doi: 10.1101/cshperspect.a025197.
4
Antibiotic resistomes of healthy pig faecal metagenomes.健康猪粪便宏基因组中的抗生素耐药组。
Microb Genom. 2019 May;5(5). doi: 10.1099/mgen.0.000272. Epub 2019 May 15.

引用本文的文献

5
Ancient Antibiotics, Ancient Resistance.古老的抗生素,古老的耐药性。
EcoSal Plus. 2021 Mar;9(2). doi: 10.1128/ecosalplus.ESP-0027-2020.
10
Look and Outlook on Enzyme-Mediated Macrolide Resistance.酶介导的大环内酯类耐药性的现状与展望
Front Microbiol. 2018 Aug 20;9:1942. doi: 10.3389/fmicb.2018.01942. eCollection 2018.

本文引用的文献

1
Why prokaryotes have pangenomes.原核生物为何拥有泛基因组。
Nat Microbiol. 2017 Mar 28;2:17040. doi: 10.1038/nmicrobiol.2017.40.
9
Theory of prokaryotic genome evolution.原核生物基因组进化理论。
Proc Natl Acad Sci U S A. 2016 Oct 11;113(41):11399-11407. doi: 10.1073/pnas.1614083113. Epub 2016 Oct 4.
10
Functional mining of transporters using synthetic selections.利用人工选择进行转运蛋白的功能挖掘。
Nat Chem Biol. 2016 Dec;12(12):1015-1022. doi: 10.1038/nchembio.2189. Epub 2016 Oct 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验