Lohse Tina, Rohrmann Sabine, Faeh David, Hothorn Torsten
Institut für Epidemiologie, Biostatistik und Prävention, Universität Zürich, Zürich, 8001, Switzerland.
F1000Res. 2017 Nov 1;6:1933. doi: 10.12688/f1000research.12934.1. eCollection 2017.
Body mass indices (BMIs) are applied to monitor weight status and associated health risks in populations. Binary or multinomial logistic regression models are commonly applied in this context, but are only applicable to BMI values categorized within a small set of defined ad hoc BMI categories. This approach precludes comparisons with studies and models based on different categories. In addition, ad hoc categorization of BMI values prevents the estimation and analysis of the underlying continuous BMI distribution and leads to information loss. As an alternative to multinomial regression following ad hoc categorization, we propose a continuous outcome logistic regression model for the estimation of a continuous BMI distribution. Parameters of interest, such as odds ratios for specific categories, can be extracted from this model post hoc in a general way. A continuous BMI logistic regression that describes BMI distributions avoids the necessity of ad hoc and post hoc category choice and simplifies between-study comparisons and pooling of studies for joint analyses. The method was evaluated empirically using data from the Swiss Health Survey.
身体质量指数(BMI)用于监测人群的体重状况及相关健康风险。在这种情况下,二元或多项逻辑回归模型通常会被应用,但这些模型仅适用于在一小组定义的临时BMI类别中分类的BMI值。这种方法排除了与基于不同类别的研究和模型进行比较的可能性。此外,BMI值的临时分类会妨碍对潜在连续BMI分布的估计和分析,并导致信息丢失。作为临时分类后多项回归的替代方法,我们提出了一种连续结果逻辑回归模型,用于估计连续的BMI分布。感兴趣的参数,如特定类别的比值比,可以从该模型中以通用方式事后提取。描述BMI分布的连续BMI逻辑回归避免了临时和事后类别选择的必要性,并简化了研究间的比较以及为联合分析而进行的研究汇总。该方法使用来自瑞士健康调查的数据进行了实证评估。