Donald Danforth Plant Science Center, Saint Louis, Missouri 63132.
Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907.
Plant Cell. 2018 Jan;30(1):48-66. doi: 10.1105/tpc.17.00816. Epub 2017 Dec 20.
Inflorescence architecture is a key determinant of yield potential in many crops and is patterned by the organization and developmental fate of axillary meristems. In cereals, flowers and grain are borne from spikelets, which differentiate in the final iteration of axillary meristem branching. In spp, inflorescence branches terminate in either a spikelet or a sterile bristle, and these structures appear to be paired. In this work, we leverage to investigate a role for the phytohormones brassinosteroids (BRs) in specifying bristle identity and maintaining spikelet meristem determinacy. We report the molecular identification and characterization of the () locus in , which encodes a rate-limiting enzyme in BR biosynthesis. Loss-of-function mutants fail to initiate a bristle identity program, resulting in homeotic conversion of bristles to spikelets. In addition, spikelet meristem determinacy is altered in the mutants, which produce two florets per spikelet instead of one. Both of these phenotypes provide avenues for enhanced grain production in cereal crops. Our results indicate that the spatiotemporal restriction of BR biosynthesis at boundary domains influences meristem fate decisions during inflorescence development. The mutants provide insight into the molecular basis underlying morphological variation in inflorescence architecture.
花序结构是许多作物产量潜力的关键决定因素,由腋芽分生组织的组织和发育命运决定。在谷类作物中,花和谷物由小穗产生,小穗在腋芽分生组织分枝的最后一次迭代中分化。在 种中,花序分枝末端为小穗或不育刚毛,这些结构似乎是成对的。在这项工作中,我们利用 来研究植物激素油菜素(BRs)在确定刚毛身份和维持小穗分生组织确定性中的作用。我们报告了在 中 ()基因座的分子鉴定和特征,该基因座编码 BR 生物合成中的限速酶。功能丧失 突变体不能启动刚毛身份程序,导致刚毛同化为小穗。此外,突变体中的小穗分生组织确定性发生改变,每个小穗产生两朵小花而不是一朵。这两种表型都为提高谷类作物的产量提供了途径。我们的结果表明,BR 生物合成在边界域的时空限制影响花序发育过程中的分生组织命运决定。 突变体为花序结构形态变异的分子基础提供了深入了解。