Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
Nat Commun. 2023 May 29;14(1):3091. doi: 10.1038/s41467-023-38812-y.
Understanding the molecular mechanisms that regulate grain yield is important for improving agricultural productivity. Protein ubiquitination controls various aspects of plant growth but lacks understanding on how E2-E3 enzyme pairs impact grain yield in major crops. Here, we identified a RING-type E3 ligase SGD1 and its E2 partner SiUBC32 responsible for grain yield control in Setaria italica. The conserved role of SGD1 was observed in wheat, maize, and rice. Furthermore, SGD1 ubiquitinates the brassinosteroid receptor BRI1, stabilizing it and promoting plant growth. Overexpression of an elite SGD1 haplotype improved grain yield by about 12.8% per plant, and promote complex biological processes such as protein processing in endoplasmic reticulum, stress responses, photosystem stabilization, and nitrogen metabolism. Our research not only identifies the SiUBC32-SGD1-BRI1 genetic module that contributes to grain yield improvement but also provides a strategy for exploring key genes controlling important traits in Poaceae crops using the Setaria model system.
理解调控谷物产量的分子机制对于提高农业生产力至关重要。蛋白质泛素化控制着植物生长的各个方面,但对于 E2-E3 酶对 major crops 谷物产量的影响还缺乏了解。在这里,我们鉴定了一个 RING 型 E3 连接酶 SGD1 及其 E2 伴侣 SiUBC32,它们负责调控谷子中的谷物产量。SGD1 在小麦、玉米和水稻中具有保守作用。此外,SGD1 泛素化了油菜素甾体受体 BRI1,稳定了它并促进了植物生长。过表达一个优良的 SGD1 单倍型使每株植物的谷物产量提高了约 12.8%,并促进了蛋白质加工内质网、应激反应、光合作用稳定和氮代谢等复杂的生物过程。我们的研究不仅鉴定了有助于提高谷物产量的 SiUBC32-SGD1-BRI1 遗传模块,还为利用谷子模型系统探索控制禾本科作物重要性状的关键基因提供了策略。