Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA.
Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut, USA.
JCI Insight. 2017 Dec 21;2(24):96352. doi: 10.1172/jci.insight.96352.
Idiopathic pulmonary fibrosis (IPF) is a fatal disease of unknown etiology characterized by a compositionally and mechanically altered extracellular matrix. Poor understanding of the origin of α-smooth muscle actin (α-SMA) expressing myofibroblasts has hindered curative therapies. Though proposed as a source of myofibroblasts in mammalian tissues, identification of microvascular pericytes (PC) as contributors to α-SMA-expressing populations in human IPF and the mechanisms driving this accumulation remain unexplored. Here, we demonstrate enhanced detection of α-SMA+ cells coexpressing the PC marker neural/glial antigen 2 in the human IPF lung. Isolated human PC cultured on decellularized IPF lung matrices adopt expression of α-SMA, demonstrating that these cells undergo phenotypic transition in response to direct contact with the extracellular matrix (ECM) of the fibrotic human lung. Using potentially novel human lung-conjugated hydrogels with tunable mechanical properties, we decoupled PC responses to matrix composition and stiffness to show that α-SMA+ PC accumulate in a mechanosensitive manner independent of matrix composition. PC activated with TGF-β1 remodel the normal lung matrix, increasing tissue stiffness to facilitate the emergence of α-SMA+ PC via MKL-1/MTRFA mechanotranduction. Nintedanib, a tyrosine-kinase inhibitor approved for IPF treatment, restores the elastic modulus of fibrotic lung matrices to reverse the α-SMA+ phenotype. This work furthers our understanding of the role that microvascular PC play in the evolution of IPF, describes the creation of an ex vivo platform that advances the study of fibrosis, and presents a potentially novel mode of action for a commonly used antifibrotic therapy that has great relevance for human disease.
特发性肺纤维化(IPF)是一种病因不明的致命疾病,其特征在于细胞外基质的组成和机械性质发生改变。由于对α-平滑肌肌动蛋白(α-SMA)表达的肌成纤维细胞的起源缺乏了解,因此阻碍了有效的治疗方法。虽然被认为是哺乳动物组织中肌成纤维细胞的来源,但微血管周细胞(PC)作为人 IPF 中表达α-SMA 的细胞群的来源的鉴定以及驱动这种积累的机制仍未得到探索。在这里,我们证明了在人 IPF 肺中,α-SMA+细胞与 PC 标志物神经胶质抗原 2 共表达的细胞的检测得到了增强。在去细胞化的 IPF 肺基质上培养的分离人 PC 表达α-SMA,表明这些细胞在与纤维化人肺的细胞外基质(ECM)直接接触时会发生表型转变。使用具有可调节机械性能的潜在新型人肺共轭水凝胶,我们将 PC 对基质组成和刚度的反应分离出来,表明 α-SMA+PC 以独立于基质组成的机械敏感方式积累。用 TGF-β1 激活的 PC 重塑正常的肺基质,增加组织硬度,通过 MKL-1/MTRFA 机械转导促进 α-SMA+PC 的出现。尼达尼布是一种批准用于 IPF 治疗的酪氨酸激酶抑制剂,它可以恢复纤维化肺基质的弹性模量,从而逆转α-SMA+表型。这项工作增进了我们对微血管 PC 在 IPF 演变中所起作用的理解,描述了创建一个推进纤维化研究的体外平台,并提出了一种常用抗纤维化治疗的潜在新作用模式,这对人类疾病具有重要意义。