Suppr超能文献

多尺度计算模型预测环境变化和药物治疗如何影响纤维化疾病中的微血管重塑。

Multiscale computational model predicts how environmental changes and drug treatments affect microvascular remodeling in fibrotic disease.

作者信息

Leonard-Duke Julie, Agro Samuel M J, Csordas David J, Bruce Anthony C, Eggertsen Taylor G, Tavakol Tara N, Barker Thomas H, Bonham Catherine A, Saucerman Jeffery J, Taite Lakeshia J, Peirce Shayn M

机构信息

Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA.

Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA.

出版信息

bioRxiv. 2024 Mar 22:2024.03.15.585249. doi: 10.1101/2024.03.15.585249.

Abstract

Investigating the molecular, cellular, and tissue-level changes caused by disease, and the effects of pharmacological treatments across these biological scales, necessitates the use of multiscale computational modeling in combination with experimentation. Many diseases dynamically alter the tissue microenvironment in ways that trigger microvascular network remodeling, which leads to the expansion or regression of microvessel networks. When microvessels undergo remodeling in idiopathic pulmonary fibrosis (IPF), functional gas exchange is impaired due to loss of alveolar structures and lung function declines. Here, we integrated a multiscale computational model with independent experiments to investigate how combinations of biomechanical and biochemical cues in IPF alter cell fate decisions leading to microvascular remodeling. Our computational model predicted that extracellular matrix (ECM) stiffening reduced microvessel area, which was accompanied by physical uncoupling of endothelial cell (ECs) and pericytes, the cells that comprise microvessels. Nintedanib, an FDA-approved drug for treating IPF, was predicted to further potentiate microvessel regression by decreasing the percentage of quiescent pericytes while increasing the percentage of pericytes undergoing pericyte-myofibroblast transition (PMT) in high ECM stiffnesses. Importantly, the model suggested that YAP/TAZ inhibition may overcome the deleterious effects of nintedanib by promoting EC-pericyte coupling and maintaining microvessel homeostasis. Overall, our combination of computational and experimental modeling can explain how cell decisions affect tissue changes during disease and in response to treatments.

摘要

研究疾病引起的分子、细胞和组织水平的变化,以及药物治疗在这些生物尺度上的效果,需要结合实验使用多尺度计算模型。许多疾病会以触发微血管网络重塑的方式动态改变组织微环境,进而导致微血管网络的扩张或消退。当微血管在特发性肺纤维化(IPF)中发生重塑时,由于肺泡结构丧失,功能性气体交换受损,肺功能下降。在此,我们将多尺度计算模型与独立实验相结合,以研究IPF中生物力学和生化信号的组合如何改变细胞命运决定从而导致微血管重塑。我们的计算模型预测,细胞外基质(ECM)硬化会减少微血管面积,同时伴随着构成微血管的内皮细胞(ECs)和平滑肌周细胞的物理解偶联。尼达尼布是一种经美国食品药品监督管理局(FDA)批准用于治疗IPF的药物,预计在高ECM硬度下,它会通过降低静止平滑肌周细胞的百分比,同时增加经历平滑肌周细胞 - 肌成纤维细胞转变(PMT)的平滑肌周细胞的百分比,进一步增强微血管消退。重要的是,该模型表明,YAP/TAZ抑制可能通过促进EC - 平滑肌周细胞偶联和维持微血管稳态来克服尼达尼布的有害影响。总体而言,我们的计算和实验模型相结合可以解释细胞决策如何在疾病期间以及对治疗的反应中影响组织变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d054/10979947/585fd9a24af0/nihpp-2024.03.15.585249v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验