Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
Epilepsia. 2018 Feb;59(2):358-368. doi: 10.1111/epi.13978. Epub 2017 Dec 19.
Antiseizure drugs are the leading therapeutic choice for treatment of epilepsy, but their efficacy is limited by pharmacoresistance and the occurrence of unwanted side effects. Here, we examined the therapeutic efficacy of KCNQ channel activation by retigabine in preventing seizures and neurocardiac dysfunction in 2 potassium channelopathy mouse models of epilepsy with differing severity that have been associated with increased risk of sudden unexpected death in epilepsy (SUDEP): the Kcna1 model of severe epilepsy and the Kcnq1 model of mild epilepsy.
A combination of behavioral, seizure threshold, electrophysiologic, and gene expression analyses was used to determine the effects of KCNQ activation in mice.
Behaviorally, Kcna1 mice exhibited unexpected hyperexcitability instead of the expected sedative-like response. In flurothyl-induced seizure tests, KCNQ activation decreased seizure latency by ≥50% in Kcnq1 strain mice but had no effect in the Kcna1 strain, suggesting the influence of genetic background. However, in simultaneous electroencephalography and electrocardiography recordings, KCNQ activation significantly reduced spontaneous seizure frequency in Kcna1 mice by ~60%. In Kcnq1 mice, KCNQ activation produced adverse cardiac effects including profound bradycardia and abnormal increases in heart rate variability and atrioventricular conduction blocks. Analyses of Kcnq2 and Kcnq3 mRNA levels revealed significantly elevated Kcnq2 expression in Kcna1 brains, suggesting that drug target alterations may contribute to the altered drug responses.
This study shows that treatment strategies in channelopathy may have unexpected outcomes and that effective rebalancing of channel defects requires improved understanding of channel interactions at the circuit and tissue levels. The efficacy of KCNQ channel activation and manifestation of adverse effects were greatly affected by genetic background, potentially limiting KCNQ modulation as a way to prevent neurocardiac dysfunction in epilepsy and thereby SUDEP risk. Our data also uncover a potential role for KCNQ2-5 channels in autonomic control of chronotropy.
抗癫痫药物是治疗癫痫的主要治疗选择,但由于药物耐药性和出现不良反应,其疗效受到限制。在这里,我们通过氯胺酮通道激活剂 retigabine 研究了 KCNQ 通道激活在预防两种不同严重程度的钾通道病癫痫模型(与癫痫猝死风险增加相关)中的治疗效果:Kcna1 重度癫痫模型和 Kcnq1 轻度癫痫模型。
采用行为、癫痫发作阈值、电生理和基因表达分析相结合的方法,确定 KCNQ 在小鼠中的激活作用。
在行为上,Kcna1 小鼠表现出意外的过度兴奋,而不是预期的镇静样反应。在氟烷诱导的癫痫发作试验中,KCNQ 激活使 Kcnq1 株小鼠的癫痫发作潜伏期降低≥50%,但对 Kcna1 株无影响,提示遗传背景的影响。然而,在同步脑电图和心电图记录中,KCNQ 激活显著降低 Kcna1 小鼠的自发性癫痫发作频率约 60%。在 Kcnq1 小鼠中,KCNQ 激活导致严重的心脏副作用,包括明显的心动过缓以及心率变异性和房室传导阻滞的异常增加。Kcnq2 和 Kcnq3 mRNA 水平的分析显示 Kcna1 大脑中 Kcnq2 表达显著升高,表明药物靶标改变可能导致药物反应改变。
本研究表明,通道病的治疗策略可能会产生意想不到的结果,并且需要更好地理解通道相互作用,以在电路和组织水平上有效平衡通道缺陷,从而提高治疗效果。KCNQ 通道激活的疗效和不良反应的表现受到遗传背景的极大影响,这可能限制了 KCNQ 调节作为预防癫痫和从而预防癫痫猝死风险的神经心脏功能障碍的方法。我们的数据还揭示了 KCNQ2-5 通道在自主神经控制心率中的潜在作用。