Suppr超能文献

依赖 NADPH 的 5-酮-D-葡萄糖酸还原酶是真菌 D-葡萄糖醛酸分解代谢途径的一部分。

NADPH-dependent 5-keto-D-gluconate reductase is a part of the fungal pathway for D-glucuronate catabolism.

机构信息

VTT Technical Research Centre of Finland Ltd, Espoo, Finland.

出版信息

FEBS Lett. 2018 Jan;592(1):71-77. doi: 10.1002/1873-3468.12946. Epub 2017 Dec 30.

Abstract

NADPH-dependent 5-keto-D-gluconate reductase was identified as a missing element in the pathway for D-glucuronate catabolism in fungi. The disruption of the gene, gluF, by CRISPR/Cas9 in the filamentous fungus Aspergillus niger resulted in a strain unable to catabolise D-glucuronate. The purified GluF protein was characterized and k and K values of 23.7 ± 1.8 s and 3.2 ± 0.1 mm for 5-keto-D-gluconate, respectively, were determined. The enzyme is reversible and is active with NADP and D-gluconate. We suggest a pathway for D-glucuronate catabolism with the intermediates L-gulonate, 2-keto-L-gulonate, L-idonate, 5-keto-D-gluconate, D-gluconate and D-gluconate-6-phosphate which is a part of the pentose phosphate pathway. A fungal enzyme activity for the conversion of L-gulonate to 2-keto-L-gulonate remains to be identified.

摘要

NADPH 依赖的 5-酮-D-葡萄糖酸还原酶被鉴定为真菌中 D-葡萄糖酸分解途径中的一个缺失元素。通过 CRISPR/Cas9 在丝状真菌黑曲霉中对基因 gluF 的破坏,导致菌株无法分解 D-葡萄糖酸。纯化的 GluF 蛋白被表征,确定了分别为 5-酮-D-葡萄糖酸的 k 和 K 值为 23.7±1.8 s 和 3.2±0.1 mm。该酶是可逆的,可与 NADP 和 D-葡萄糖酸一起作用。我们提出了 D-葡萄糖酸分解代谢的途径,其中包括中间体 L-古洛糖酸、2-酮-L-古洛糖酸、L-异头酸、5-酮-D-葡萄糖酸、D-葡萄糖酸和 D-葡萄糖酸-6-磷酸,这些都是戊糖磷酸途径的一部分。真菌中 L-古洛糖酸转化为 2-酮-L-古洛糖酸的酶活性仍有待确定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0466/5814732/940138e63e8f/FEB2-592-71-g001.jpg

相似文献

1
NADPH-dependent 5-keto-D-gluconate reductase is a part of the fungal pathway for D-glucuronate catabolism.
FEBS Lett. 2018 Jan;592(1):71-77. doi: 10.1002/1873-3468.12946. Epub 2017 Dec 30.
4
The 'true' L-xylulose reductase of filamentous fungi identified in Aspergillus niger.
FEBS Lett. 2010 Aug 20;584(16):3540-4. doi: 10.1016/j.febslet.2010.06.037. Epub 2010 Jul 21.
7
L-xylo-3-hexulose reductase is the missing link in the oxidoreductive pathway for D-galactose catabolism in filamentous fungi.
J Biol Chem. 2012 Jul 27;287(31):26010-8. doi: 10.1074/jbc.M112.372755. Epub 2012 May 31.
8
GalX regulates the D-galactose oxido-reductive pathway in Aspergillus niger.
FEBS Lett. 2012 Nov 16;586(22):3980-5. doi: 10.1016/j.febslet.2012.09.029. Epub 2012 Oct 12.

引用本文的文献

1
C11orf54 catalyzes L-xylulose formation in human metabolism.
Proc Natl Acad Sci U S A. 2025 Aug 5;122(31):e2506597122. doi: 10.1073/pnas.2506597122. Epub 2025 Jul 30.
2
CRISPR/Cas9-Based Genome Editing and Its Application in Species.
J Fungi (Basel). 2022 Apr 30;8(5):467. doi: 10.3390/jof8050467.
3
Discovery of a Novel Glucuronan Lyase System in .
Appl Environ Microbiol. 2022 Jan 11;88(1):e0181921. doi: 10.1128/AEM.01819-21. Epub 2021 Oct 27.
4
The Dynamic Responses of Oil Palm Leaf and Root Metabolome to Phosphorus Deficiency.
Metabolites. 2021 Apr 2;11(4):217. doi: 10.3390/metabo11040217.
5
Applications of CRISPR/Cas9 in the Synthesis of Secondary Metabolites in Filamentous Fungi.
Front Microbiol. 2021 Feb 11;12:638096. doi: 10.3389/fmicb.2021.638096. eCollection 2021.
6
CRISPR/Cas9 genome editing technology in filamentous fungi: progress and perspective.
Appl Microbiol Biotechnol. 2019 Sep;103(17):6919-6932. doi: 10.1007/s00253-019-10007-w. Epub 2019 Jul 22.
7
Microbial hexuronate catabolism in biotechnology.
AMB Express. 2019 Jan 30;9(1):16. doi: 10.1186/s13568-019-0737-1.

本文引用的文献

3
A CRISPR-Cas9 System for Genetic Engineering of Filamentous Fungi.
PLoS One. 2015 Jul 15;10(7):e0133085. doi: 10.1371/journal.pone.0133085. eCollection 2015.
4
Engineering filamentous fungi for conversion of D-galacturonic acid to L-galactonic acid.
Appl Environ Microbiol. 2012 Dec;78(24):8676-83. doi: 10.1128/AEM.02171-12. Epub 2012 Oct 5.
5
An evolutionary conserved d-galacturonic acid metabolic pathway operates across filamentous fungi capable of pectin degradation.
Fungal Genet Biol. 2008 Nov;45(11):1449-57. doi: 10.1016/j.fgb.2008.08.002. Epub 2008 Aug 14.
6
Structure and functional properties of ulvan, a polysaccharide from green seaweeds.
Biomacromolecules. 2007 Jun;8(6):1765-74. doi: 10.1021/bm061185q. Epub 2007 Apr 26.
7
High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method.
Nat Protoc. 2007;2(1):31-4. doi: 10.1038/nprot.2007.13.
8
A novel NADH-linked l-xylulose reductase in the l-arabinose catabolic pathway of yeast.
J Biol Chem. 2004 Apr 9;279(15):14746-51. doi: 10.1074/jbc.M312533200. Epub 2004 Jan 21.
10
Aspergillus enzymes involved in degradation of plant cell wall polysaccharides.
Microbiol Mol Biol Rev. 2001 Dec;65(4):497-522, table of contents. doi: 10.1128/MMBR.65.4.497-522.2001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验