Suppr超能文献

通过抑制控制引导舆论动态。

Steering opinion dynamics via containment control.

作者信息

DeLellis Pietro, DiMeglio Anna, Garofalo Franco, Lo Iudice Francesco

机构信息

Department of Electrical Engineering and Information Technology, University of Naples Federico II, via Claudio, 21, 80125 Napoli, Italy.

出版信息

Comput Soc Netw. 2017;4(1):12. doi: 10.1186/s40649-017-0048-0. Epub 2017 Nov 27.

Abstract

In this paper, we model the problem of influencing the opinions of groups of individuals as a containment control problem, as in many practical scenarios, the control goal is not full consensus among all the individual opinions, but rather their containment in a certain range, determined by a set of leaders. As in classical bounded confidence models, we consider individuals affected by the confirmation bias, thus tending to influence and to be influenced only if their opinions are sufficiently close. However, here we assume that the confidence level, modeled as a proximity threshold, is not constant and uniform across the individuals, as it depends on their opinions. Specifically, in an extremist society, the most radical agents (i.e., those with the most extreme opinions) have a higher appeal and are capable of influencing nodes with very diverse opinions. The opposite happens in a moderate society, where the more connected (i.e., influential) nodes are those with an average opinion. In three artificial societies, characterized by different levels of extremism, we test through extensive simulations the effectiveness of three alternative containment strategies, where leaders have to select the set of followers they try to directly influence. We found that, when the network size is small, a stochastic time-varying pinning strategy that does not rely on information on the network topology proves to be more effective than static strategies where this information is leveraged, while the opposite happens for large networks where the relevance of the topological information is prevalent.

摘要

在本文中,我们将影响个体群体意见的问题建模为一个遏制控制问题。因为在许多实际场景中,控制目标并非是让所有个体意见完全达成一致,而是将其遏制在由一组领导者所确定的某个范围内。与经典的有限信心模型一样,我们考虑个体受到证实偏差的影响,因此只有当他们的意见足够接近时,才倾向于相互影响。然而,在此我们假设,作为接近阈值建模的信心水平,在个体之间并非恒定且统一,因为它取决于他们的意见。具体而言,在一个极端主义社会中,最激进的主体(即那些意见最极端的)具有更高的吸引力,并且能够影响意见非常多样的节点。而在一个温和社会中情况则相反,连接性更强(即更有影响力)的节点是那些持有平均意见的节点。在三个具有不同极端主义程度的人工社会中,我们通过广泛的模拟测试了三种替代遏制策略的有效性,其中领导者必须选择他们试图直接影响的追随者集合。我们发现,当网络规模较小时,一种不依赖网络拓扑信息的随机时变牵制策略比利用此信息的静态策略更有效,而对于拓扑信息相关性占主导的大型网络,情况则相反。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/296d/5732624/cf47bd2c8c9a/40649_2017_48_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验