Suppr超能文献

分类亲缘关系、生境和种子质量强烈预测种子脱水响应:基于 17539 个物种的提升回归树分析。

Taxonomic affinity, habitat and seed mass strongly predict seed desiccation response: a boosted regression trees analysis based on 17 539 species.

机构信息

Royal Botanic Gardens, Kew, Wakehurst Place, West Sussex, UK.

出版信息

Ann Bot. 2018 Jan 25;121(1):71-83. doi: 10.1093/aob/mcx128.

Abstract

BACKGROUND AND AIMS

Seed desiccation response plays an important role in plant regeneration ecology, and has significant implications for species conservation. The majority of seed plants produce desiccation-tolerant (orthodox) seeds, whilst comparatively few produce desiccation-sensitive (recalcitrant) seeds that are unable to survive dehydration, and which cannot be conserved in traditional seed banks. This study develops a set of models to predict seed desiccation response in unstudied species.

METHODS

Taxonomy, trait, location and climate data were compiled to form a global data set of 17 539 species. Three boosted regression trees models were then developed to predict species' seed desiccation responses based on habitat and trait information for the species, and the seed desiccation responses of close relatives (either members of the same genus, family or order, depending on the model). Ten-fold cross-validation was used to test model predictive success. The utility of the models was then demonstrated by predicting seed desiccation response for two floras: Ecuador, and Britain and Ireland.

KEY RESULTS

The three models had varying success rates for identifying the desiccation-sensitive species: 89 % for the genus-level model, 79 % for the family-level model and 60 % for the order-level model. The most important predictor variables were the seed desiccation responses of a species' relatives, seed mass and annual precipitation. It is predicted that 10 % of seed plants from Ecuador and 1.2 % of those from Britain and Ireland produce desiccation-sensitive seeds. Due to data availability, prediction accuracy is likely to be higher for the British and Irish flora, where it is estimated that a desiccation-sensitive species had a 96.7 % chance of being correctly identified, compared with 80.8 % in the Ecuador flora.

CONCLUSIONS

These models can utilize existing data to predict species' likely seed desiccation responses, providing a gap-filling tool for global studies of plant traits, as well as critical decision-making support for plant conservation activities.

摘要

背景与目的

种子干燥响应在植物再生生态学中起着重要作用,对物种保护具有重要意义。大多数种子植物产生耐干燥(正统)的种子,而相对较少的植物产生不耐干燥(顽固)的种子,这些种子不能在传统的种子库中保存。本研究开发了一套模型来预测未研究物种的种子干燥响应。

方法

收集了分类学、特征、位置和气候数据,形成了一个包含 17539 个物种的全球数据集。然后,根据物种的生境和特征信息,以及近缘种(取决于模型,是同一属、科或目的成员)的种子干燥响应,开发了三个增强回归树模型来预测物种的种子干燥响应。使用十折交叉验证来测试模型的预测成功率。然后通过预测厄瓜多尔和英国爱尔兰两个植物群的种子干燥响应来证明模型的实用性。

结果

这三个模型对识别敏感干燥的物种的成功率不同:属级模型为 89%,科级模型为 79%,目级模型为 60%。最重要的预测变量是物种亲缘关系的种子干燥响应、种子质量和年降水量。预测厄瓜多尔 10%的种子植物和英国爱尔兰 1.2%的种子植物产生敏感干燥的种子。由于数据的可用性,英国和爱尔兰植物群的预测准确性可能更高,在这些植物群中,预测敏感干燥的物种的正确识别率估计为 96.7%,而在厄瓜多尔植物群中为 80.8%。

结论

这些模型可以利用现有数据来预测物种可能的种子干燥响应,为植物特征的全球研究提供一个填补空白的工具,并为植物保护活动提供关键的决策支持。

相似文献

4
Ecological significance of seed desiccation sensitivity in Quercus ilex.
Ann Bot. 2013 Apr;111(4):693-701. doi: 10.1093/aob/mct025. Epub 2013 Feb 6.
5
From Avicennia to Zizania: seed recalcitrance in perspective.
Ann Bot. 2008 Jan;101(2):213-28. doi: 10.1093/aob/mcm168. Epub 2007 Aug 17.
7
Ecological correlates of seed desiccation tolerance in tropical African dryland trees.
Am J Bot. 2004 Jun;91(6):863-70. doi: 10.3732/ajb.91.6.863.
8
Tree seed traits' response to monsoon climate and altitude in Indian subcontinent with particular reference to the Himalayas.
Ecol Evol. 2017 Aug 11;7(18):7408-7419. doi: 10.1002/ece3.3181. eCollection 2017 Sep.
10
Climate drives patterns of seed traits in Quercus species across China.
New Phytol. 2022 Jun;234(5):1629-1638. doi: 10.1111/nph.18103. Epub 2022 Apr 5.

引用本文的文献

2
Desiccation tolerant yet short-lived seeds: A conundrum for post-harvest handling of a high restoration value bunchgrass?
PLoS One. 2025 Jun 20;20(6):e0326596. doi: 10.1371/journal.pone.0326596. eCollection 2025.
3
Seed biology and regeneration niche of the threatened cold desert perennial A. Gray.
Front Plant Sci. 2025 May 5;16:1568951. doi: 10.3389/fpls.2025.1568951. eCollection 2025.
6
Modeling Tick Populations: An Ecological Test Case for Gradient Boosted Trees.
bioRxiv. 2023 Nov 29:2023.03.13.532443. doi: 10.1101/2023.03.13.532443.
7
Seed Longevity-The Evolution of Knowledge and a Conceptual Framework.
Plants (Basel). 2023 Jan 19;12(3):471. doi: 10.3390/plants12030471.
8
Choosing the Right Path for the Successful Storage of Seeds.
Plants (Basel). 2022 Dec 23;12(1):72. doi: 10.3390/plants12010072.
10
What affects the desiccation tolerance threshold of Brazilian Eugenia (Myrtaceae) seeds?
J Plant Res. 2022 Jul;135(4):579-591. doi: 10.1007/s10265-022-01396-7. Epub 2022 Jun 7.

本文引用的文献

1
The global spectrum of plant form and function.
Nature. 2016 Jan 14;529(7585):167-71. doi: 10.1038/nature16489. Epub 2015 Dec 23.
2
What it takes to invade grassland ecosystems: traits, introduction history and filtering processes.
Ecol Lett. 2016 Mar;19(3):219-29. doi: 10.1111/ele.12556. Epub 2015 Dec 22.
5
Three keys to the radiation of angiosperms into freezing environments.
Nature. 2014 Feb 6;506(7486):89-92. doi: 10.1038/nature12872. Epub 2013 Dec 22.
6
Determinants of reproductive success in dominant pairs of clownfish: a boosted regression tree analysis.
J Anim Ecol. 2011 May;80(3):528-38. doi: 10.1111/j.1365-2656.2011.01803.x. Epub 2011 Feb 1.
7
A working guide to boosted regression trees.
J Anim Ecol. 2008 Jul;77(4):802-13. doi: 10.1111/j.1365-2656.2008.01390.x. Epub 2008 Apr 8.
8
From Avicennia to Zizania: seed recalcitrance in perspective.
Ann Bot. 2008 Jan;101(2):213-28. doi: 10.1093/aob/mcm168. Epub 2007 Aug 17.
9
Boosted trees for ecological modeling and prediction.
Ecology. 2007 Jan;88(1):243-51. doi: 10.1890/0012-9658(2007)88[243:btfema]2.0.co;2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验