Xie Qiwei, Chen Xi, Deng Hao, Liu Danqian, Sun Yingyu, Zhou Xiaojuan, Yang Yang, Han Hua
Research Base of Beijing Modern Manufacturing Development, No.100, Pingleyuan, Beijing, 100124 China.
Data Mining Lab, School of Management, Beijing University of Technology, No.100, Pingleyuan, Beijing, 100124 China.
BioData Min. 2017 Dec 20;10:40. doi: 10.1186/s13040-017-0161-5. eCollection 2017.
In the nervous system, the neurons communicate through synapses. The size, morphology, and connectivity of these synapses are significant in determining the functional properties of the neural network. Therefore, they have always been a major focus of neuroscience research. Two-photon laser scanning microscopy allows the visualization of synaptic structures in vivo, leading to many important findings. However, the identification and quantification of structural imaging data currently rely heavily on manual annotation, a method that is both time-consuming and prone to bias.
We present an automated approach for the identification of synaptic structures in two-photon images. Axon boutons and dendritic spines are structurally distinct. They can be detected automatically using this image processing method. Then, synapses can be identified by integrating information from adjacent axon boutons and dendritic spines. In this study, we first detected the axonal boutons and dendritic spines respectively, and then identified synapses based on these results. Experimental results were validated manually, and the effectiveness of our proposed method was demonstrated.
This approach will helpful for neuroscientists to automatically analyze and quantify the formation, elimination and destabilization of the axonal boutons, dendritic spines and synapses.
在神经系统中,神经元通过突触进行通信。这些突触的大小、形态和连接性对于确定神经网络的功能特性至关重要。因此,它们一直是神经科学研究的主要焦点。双光子激光扫描显微镜能够在体内可视化突触结构,从而带来了许多重要发现。然而,目前结构成像数据的识别和量化严重依赖人工标注,这种方法既耗时又容易产生偏差。
我们提出了一种用于在双光子图像中识别突触结构的自动化方法。轴突终扣和树突棘在结构上有所不同。使用这种图像处理方法可以自动检测到它们。然后,通过整合相邻轴突终扣和树突棘的信息来识别突触。在本研究中,我们首先分别检测轴突终扣和树突棘,然后基于这些结果识别突触。实验结果经过人工验证,证明了我们所提出方法的有效性。
这种方法将有助于神经科学家自动分析和量化轴突终扣、树突棘和突触的形成、消除和不稳定情况。