Suppr超能文献

用于体内双光子图像中轴突终扣、树突棘和突触检测的自动化流程。

An automated pipeline for bouton, spine, and synapse detection of in vivo two-photon images.

作者信息

Xie Qiwei, Chen Xi, Deng Hao, Liu Danqian, Sun Yingyu, Zhou Xiaojuan, Yang Yang, Han Hua

机构信息

Research Base of Beijing Modern Manufacturing Development, No.100, Pingleyuan, Beijing, 100124 China.

Data Mining Lab, School of Management, Beijing University of Technology, No.100, Pingleyuan, Beijing, 100124 China.

出版信息

BioData Min. 2017 Dec 20;10:40. doi: 10.1186/s13040-017-0161-5. eCollection 2017.

Abstract

BACKGROUND

In the nervous system, the neurons communicate through synapses. The size, morphology, and connectivity of these synapses are significant in determining the functional properties of the neural network. Therefore, they have always been a major focus of neuroscience research. Two-photon laser scanning microscopy allows the visualization of synaptic structures in vivo, leading to many important findings. However, the identification and quantification of structural imaging data currently rely heavily on manual annotation, a method that is both time-consuming and prone to bias.

RESULTS

We present an automated approach for the identification of synaptic structures in two-photon images. Axon boutons and dendritic spines are structurally distinct. They can be detected automatically using this image processing method. Then, synapses can be identified by integrating information from adjacent axon boutons and dendritic spines. In this study, we first detected the axonal boutons and dendritic spines respectively, and then identified synapses based on these results. Experimental results were validated manually, and the effectiveness of our proposed method was demonstrated.

CONCLUSIONS

This approach will helpful for neuroscientists to automatically analyze and quantify the formation, elimination and destabilization of the axonal boutons, dendritic spines and synapses.

摘要

背景

在神经系统中,神经元通过突触进行通信。这些突触的大小、形态和连接性对于确定神经网络的功能特性至关重要。因此,它们一直是神经科学研究的主要焦点。双光子激光扫描显微镜能够在体内可视化突触结构,从而带来了许多重要发现。然而,目前结构成像数据的识别和量化严重依赖人工标注,这种方法既耗时又容易产生偏差。

结果

我们提出了一种用于在双光子图像中识别突触结构的自动化方法。轴突终扣和树突棘在结构上有所不同。使用这种图像处理方法可以自动检测到它们。然后,通过整合相邻轴突终扣和树突棘的信息来识别突触。在本研究中,我们首先分别检测轴突终扣和树突棘,然后基于这些结果识别突触。实验结果经过人工验证,证明了我们所提出方法的有效性。

结论

这种方法将有助于神经科学家自动分析和量化轴突终扣、树突棘和突触的形成、消除和不稳定情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d474/5738741/c5f4037f5d8d/13040_2017_161_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验