IEEE J Biomed Health Inform. 2013 Mar;17(2):319-35. doi: 10.1109/TITB.2012.2209670. Epub 2012 Jul 20.
In order to understand the brain, we need to first understand the morphology of neurons. In the neurobiology community, there have been recent pushes to analyze both neuron connectivity and the influence of structure on function. Currently, a technical road block that stands in the way of these studies is the inability to automatically trace neuronal structure from microscopy. On the image processing side, proposed tracing algorithms face difficulties in low contrast, indistinct boundaries, clutter, and complex branching structure. To tackle these difficulties, we develop Tree2Tree, a robust automatic neuron segmentation and morphology generation algorithm. Tree2Tree uses a local medial tree generation strategy in combination with a global tree linking to build a maximum likelihood global tree. Recasting the neuron tracing problem in a graph-theoretic context enables Tree2Tree to estimate bifurcations naturally, which is currently a challenge for current neuron tracing algorithms. Tests on cluttered confocal microscopy images of Drosophila neurons give results that correspond to ground truth within a margin of ±2.75% normalized mean absolute error.
为了理解大脑,我们首先需要了解神经元的形态。在神经生物学领域,最近有推动分析神经元连接和结构对功能的影响的趋势。目前,这些研究的一个技术障碍是无法自动从显微镜中追踪神经元结构。在图像处理方面,提出的跟踪算法在对比度低、边界不清晰、杂乱和复杂的分支结构方面存在困难。为了解决这些困难,我们开发了 Tree2Tree,这是一种强大的自动神经元分割和形态生成算法。Tree2Tree 使用局部中轴树生成策略与全局树链接相结合,构建最大似然全局树。将神经元跟踪问题重新表述为图论中的问题,使 Tree2Tree 能够自然地估计分支,这是当前神经元跟踪算法面临的挑战。对果蝇神经元杂乱的共聚焦显微镜图像的测试结果与真实值相差在±2.75%归一化平均绝对误差范围内。